مهارات تطوير النماذج التعليمية الافتراضية باستخدام برنامج Cad

إعداد
عمرو حافظ حافظ البسيوني

مدرس مساعد بقسم تكنولوجيا التعليم

أ.د/ أماني محمد عوض
أستاذ تكنولوجيا التعليم وقائم بعمل عميد
ووكيل كلية التربية لشؤون البيئة وخدمة المجتمع بجامعة دمياط

 بكلية التربية-جامعة دمياط

١٤٤٥ هـ ٢٠٢٤ م
مهارات تطوير النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad

المطلوب تثمينها لدى طلاب تكنولوجيا التعليم

مستخلص البحث:

هدف البحث الحالي إلى تحديد قائمة بمهارات تطوير النماذج التعليمية الافتراضية لدى طلاب تكنولوجيا التعليم، ولتحقيق هذا الهدف أعد الباحثان استبانة لتحديد قائمة بمهارات تطوير النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad المطلوب تثمينها لدى طلاب تكنولوجيا التعليم، وقد أُجريت هذه الاستبانة بعد عرضها على السادة الخبراء والمتخصصين في مجال تكنولوجيا التعليم والقيام بالتغييرات المطلوبة فيها، وتم التوصل إلى الصورة النهائية لقائمة المهارات والتي تضمنت عدد (62) مهارات رئيسية، وعدد (26) مهارة فرعية، وعدد (254) مؤشرًا أدائيًا.

الكلمات المفتاحية: النماذج التعليمية الافتراضية، برنامج Tinker Cad، تكنولوجيا التعليم.
Skills of Developing virtual instructional Models using Tinker Cad program that are required to be Enhanced among Educational Technology students

Abstract:
The aim of the current research is to identify a list of virtual instructional model Developing skills among instructional technology students. To achieve this goal, researchers have prepared a questionnaire to identify a list of virtual instructional model Developing skills using the (Tinker Cad) program that are required to be developed among instructional technology students. This questionnaire was approved after presenting it to experts and specialists in the field of instructional technology and making the required modifications. The final picture of the skill list was obtained, which included (6) main skills, (36) sub-skills, and (254) performance indicators.

Keywords: virtual instructional models, (Tinker Cad) program, instructional technology.
مقدمة:

يتميز العصر الحالي بالتغيير المستمر، والتطور السريع في كافة مجالات الحياة نتيجةً للتطورات العلمية والتكنولوجية والانفجار المعرفى والتغيير المعلوماتي الذي حدث وما زال يحدث حتى الآن؛ مما أثر بدوره على مختلف الأنشطة الحياتية، وأهمها العملية التعليمية؛ وعلى الرغم من التطور والتقدم الحادثين في مجال تكنولوجيا المعلومات والاتصالات إلا أن البرامج الأكاديمية في المؤسسات التعليمية ركزت في معظمها على مجال المعلومات والمعرفة النظرية، وعدم الاهتمام بتنمية المهارات العملية، مما أثر سلبيًا على مقدرة الخريجين على تنمية احتياجات سوق العمل، وأسفر عن إنسحاب الفجوة بين امتلاك الخريجين للمهارات العملية والمهنية والاحتياجات الفعلية لسوق العمل.

وتشير على علمات (2014، 305) إلى ضرورة إعادة النظر في برامج إعداد المعلم بكليات التربية، بوصفه العنصر الأهم، والتركيز الأساسي في تقدم التعليم وتطويره، ومن هنا أصبحًا ضرورًا على المؤسسات التعليمية بصفة عامة وكليات التربية بصفة خاصة محاولة تحقيق مستوى عالًا من الكفاءة والمهارة لطلابها المعلمين، وإعدادهم أعدادًا جيدة لرفع كفاءة العملية التعليمية لتلائم التغيير الحادث في عمليات التعلم.

وتؤكد باهيل (Bhaila، 2014) على أن الكفاءات التكنولوجية أصبحت أساسًا للعيش في مجتمع المعرفة، ويجب أن تعمل المؤسسات التعليمية على تزويد وتدريب وتفعيل المعلمين على استخدام هذه التكنولوجيا وتوظيفها في مواقفهم

بتبع الباحث في توثيق المراجع قواعد الإصدار السادس لجمعية علم النفس الأمريكية (American Psychological Association (APA- V، 06)) وهي (الاسم الأخير أو اسم العائلة، السنة، الصفحة أو الصفحات، مع كتابة الاسم الأول واسم العائلة في المراجع العربية).
التعليمية داخل الصف الدراسي؛ فهذا يعتبر شرطاً أساسياً لإنجاز العملية التعليمية، كما تعد الكفاحات التكنولوجية أساساً للمعلم الساعي إلى التغيير ومواكبة التطورات التي تطرأ على الساحة التربوية وخصوصاً ونحن في عصر بات الأزمة تطلق على الشخص غير قادر على استخدام التكنولوجيا وليس من لا يقرأ أو يكتب.

ولما كانت كليات التربية بكافة تخصصاتها المتعددة بها إعداد المعلم الذي يسهم في تحقيق جودة التعليم في كافة مراحله؛ فإن هذا يتطلب إعداد خريجيها بشكل يتناسب مع طبيعة هذه التطورات، سواء قبل الخدمة أو أثناءها، في يلبوا احتياجات مجتمعهم، ويساعدو في تطويره بالشكل المرغوب فيه، وتعزز مهارات تصميم وإنتاج النماذج التعليمية الافتراضية جزءًا أساسياً من الكفاحات التكنولوجية المتطلبة من أخصائيي تكنولوجيا التعليم، قبل الخدمة وأثنائها خاصة في ظل العديد من التحديات التي فرضتها ثورة الاتصالات وتكنولوجيا المعلومات على العديد من المجالات، والتي منها المجال التعليمي (ملكة الزهراني، 2018)

وبفضل ظهور شبكة المعلومات وانتشارها كمستشار تكنولوجي، بزغت الكثير من الوسائط التعليمية التي تتصف بالالكترونية، وتوزيع الوسائط التقليدية، فمثلما ظهرت المدرسة الإلكترونية في مقابل المدرسة التقليدية، والفصل الافتراضي في مقابل الفصل التقليدي المكتبة الإلكترونية في مقابل المكتبة التقليدية، والكتب الإلكتروني في مقابل الكتب التقليدية، كذلك كان الحال بالنسبة للنماذج فقد ظهرت النماذج الافتراضية في مقابل النماذج التقليدية (وليد الحفاوي، 2011)

العملية التعليمية يساعد المتعلم على الانطلاق من الخبرة المعرفية المجردة إلى الخبرة المعرفية المادية المحسوسة، مما يجعل عملية التعلم عملية مشوقة وجذابة وأكثر فاعلية، والقرب واقعية وأبقى أثرًا في ذهن المتعلم، ففيهم المادة التعليمية المقدمة له، ويغوص في أدق تفاصيلها، ويجعل أبسط معلماتها، فترسخ المعارف في ذاكرته ويربطها بخياله وأفقه، وكل هذا يرجع إلى إمكانات النماذج التعليمية الافتراضية في تقديم خبرات معرفية ملموسة يستطيع المتعلم من خلالها التفاعل مع جميع الأنشطة التعليمية، ورؤية أشياء لا يمكن رؤيتها في الواقع، نظرًا لخطرتها أو نمطها، أو وجود عوائق جغرافية، أو قيود زمنية، أو تكلفة مادية باهظة، أو عدم توافر أدوات أو وسائل تُجسّد هذه الصور والرسومات بجودة عالية، كما تممتع هذه النماذج أثناء التصميم بالمرنة والقدرة على تغيير زياها وأبعادها في أي اتجاه من اتجاهاتها الثلاثة بسهولة ويسر.

ويرى كومبس (Combs, 2011, p. 25) أن هذه النماذج تتميز بسهولة معالجة الأخطاء الموجودة فيها بعد تصميمها وإنتاجها على عكس النماذج والمجسمات التعليمية التقليدية التي كثيرًا ما ينتج عنها أثناء التصميم أو الإنتاج أخطاء العمل البشري سواء بالمبالاة أو النسيان لأهم تفاصيلها وأجزائها الدقيقة، ولا يجوز تعديلها إلا بصعوبة، كما أن النماذج التعليمية الافتراضية تساعد على خلق فرص أكثر للإبداع والابتكار، وإيجاد حلول أنيقة للكثير من المشاكل العالمية في أغلب المجالات وفي القلب منها مجال التعليم لأنها تزيد من دافعية المتعلمين نحو التعلم وجعل موضوعات التعلم أقرب إلى الواقع وتسير فيهم المصطلحات المهمة غير الواضحة، مما يؤثر إيجابًا على اتجاهات المتعلمين نحو المحتوى التعليمي المقدم إليهم؛ فضلاً عن توفير الوقت والجهد المبذولين من قبل المعلم والمتعلم قبل وأثناء وبعد التعلم وزيادة كفاءة العملية التعليمية.
وإعادة النظر إلى هذه المزايا السابقة المرتبطة بالنموذج التعليمية الافتراضية، تتضح أهمية الحاجة الضرورية لتوظيفها في خدمة العملية التعليمية، وتعد مهارات تطوير النماذج التعليمية الافتراضية متطلباً ضرورياً، وفكرة أساسية من أهم المتطلبات والكفايات التكنولوجية، التي يجب أن يمتلكها ويتمتع بها أخصائيو تكنولوجيا التعليم؛ قبل الخدمة وخاصة في ظل كثرة التحديات التي فرضتها ثورة الاتصالات وتكنولوجيا المعلومات على عدد من المجالات، ولاسيما المجال التعليمي.

الإحساس بمشكلة البحث:

وقد أشتكى مشكلة البحث الحالي من خلال أربعة محاور:

أولاً الملاحظة الشخصية: أثناء قيام الباحثين بالإطلاع على توصيف المقررات الدراسية الخاصة بشعبة تكنولوجيا التعليم لاحظوا أن توصيف بعض هذه المقررات لا يواكب التغييرات العالمية للعصر الحالي ويتناقص مع توجه الدولة المصرية الذي يتجه بقوة نحو مساعي ثورة التحول الرقمي ودخول كلية مؤسسات الدولة وفي القلب منها-مؤسسات التعليمية- تحت مظلة اتجاهات الميكانة، والحوسبة، والرقمنة، والذكاء الاصطناعي الموجودة في دول العالم المتقدمة، فعلى سبيل المثال وليس الحصر: النماذج والمجموعات التعليمية التقليدية التي يقوم بإنتاجها طلاب شعبة تكنولوجيا التعليم لا يتم الاستفادة القصوى منها في مجال التعليم، وإنما يتم تجربتها- غالبًا- في مخازن الكليات وتصبح بلا جدوية تعليمية، وتصير معرضة للتفت، أو الكسر، أو القيء بعدما أنفق الطلاب في إنتاجها مبالغ باهظة.

كما أن جائحة كورونا عطلت التعليم المباشر فترة زمنية طويلة وهذه الفترة حالت بين المعلم وتقديمه لمنتجات طلبه، ومنها: النماذج والمجموعات التعليمية وإعطائه تدريجة مناسبة عليها، وتقديمه لهذه المنتجات تقييمًا موضوعيًا في
نة نهاية الفصل الدراسي؛ فضلاً عن ظهور الطابعات ثلاثية الأبعاد التي قد غزت كثيرًا من المجالات ووظفتها هذه المجالات في خدمتها واستغلالها أفضل استغلال، ولا زالت العملية التعليمية تغص الطرف عن استخدامها، وإنتاج الوسائل التعليمية من خلالها، ومن الأهمية بمكان العمل على صقل مهارات إخراجي تكنولوجيا التعليم وقدرته على استخدام كافة البرامج والتطبيقات الحديثة بدقةً بالغة، وكفاءةً متاحة وحرفية؛ لتناسب كفاهته مع احتياجات سوق العمل وممارسات التعليم العالمي الحالي؛ فنما ويزود معلمي المدارس بكل متعلقاتهم وكافة احتياجاتهم من مصادر التعلم الحديثة التي توفر الخبرة البديلة لطلابهم.

فاعلية النماذج التعليمية الافتراضية في تنمية الجوانب التحصيلية والمهارية والحمل المعرفي لدى طلاب تكنولوجيا التعليم، ودراسة أحمد مقرب (2021) التي توصلت إلى
فاعلة النماذج الافتراضية التفاعلية في بيئة نظام المعلومات الجغرافية.
ثالثًا: كما نادى الكثير من المؤتمرات والندوات العلمية بأهمية تنمية الكفاءات
technological لدى الأخصائيين وسائل مهاراتهم وضرورة توظيف النماذج التعليمية
الافتراضية في العملية التعليمية، ومنها: المؤتمر العلمي الخامس للجمعية المصرية
لتكنيكيا التعليم (2016) بعنوان إعداد وتدريب المعلمين في ضوء متطلبات التنمية
ومستقبلات العصر الذي أوصى بضرورة الاستفادة من قدرات تكنولوجيا التعليم
المقدمة في توفير تعلم من رص ذين طبيعة تفاعلية تثير تفكير المتعلم ونشاطهم مع
بهيئة فرص مناسبة للابتكار والإبداع، مع ضرورة تطوير مصادر تعلم إلكترونية
متنوعة غير تقليدية ونماذج تعلم متقدمة تراعى حاجات المعلمين، كما أوصى
المؤتمر الدولي المعني بإدارة العلوم والتعليم المتعدد في الفترة من 23-24
نوفمبر (2017) بمدينة كونينغ في الصين بأهمية استخدام النماذج الافتراضية في
التعليم عن بعد لجعله أكثر واقعية وملاءمة لتعلم، وضرورة تنمية مهارات إنتاجها
للطلاب.

وقد أكد كل من: المؤتمر الدولي الرابع لتقنيات التعليم بعنوان دعم التربية
بالتقنيات ما وراء الحداثة واستدامة الإنكار في ديسمبر (2017)، والمؤتمر العلمي
الأول الدولي لكلية التربية النوعية جامعة كفر الشيخ بعنوان: العلوم النوعية ودورها
التنموي وتحديات سوق العمل المتعدد في أكتوبر (2017)، والمؤتمر العلمي السنوي
لكلية الدراسات العليا للتربية بعنوان التربوية وبيانات التعلم التفاعلية تحديات الواقع
ورؤى المستقبل في يوليو (2018) بضرورة الاستفادة من كافة المستحدثات
التكنولوجية وتوظيفها في خدمة العملية التعليمية.
رابعًا: مما دفع الباحثين لعمل دراسة استكشافية للتعرف على مدى حاجة طلاب الفرقة الثالثة شعبة تكنولوجيا لإنتاج النماذج التعليمية الافتراضية، وقد اعتمدتهم هذه الدراسة على ما يلي:

أ. استبداً للتعريف على مدى حاجة طلاب الفرقة الثالثة شعبة تكنولوجيا التعليم لتطوير النماذج التعليمية الافتراضية.

ب. مقابلة غير مقننة لتحديد أهم المعوقات والمشكلات التي واجهت طلاب الفرقة الرابعة شعبة تكنولوجيا التعليم أثناء إنتاج النماذج والمجموعات التعليمية خلال فترة دراستهم.

وقد أعد الباحثين الاستبانة من خلال تطبيق Google Forms وطبقوها على عينةٍ عددها (40) طالبًا من طلاب الفرقة الثالثة شعبة تكنولوجيا التعليم للعام الجامعي 2021/2022، وذلك في يوم 05/04/2022 م، وأسفر تطبيق الاستبانة عن النتائج الموضحة بالجدول التالي:

جدول (1)

<table>
<thead>
<tr>
<th>العبارة</th>
<th>لا</th>
<th>نعم</th>
<th>نسبة المئوية</th>
</tr>
</thead>
<tbody>
<tr>
<td>هل لديك خبرةً على مفهوم النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>هل تجيد مهارات تصميم وإنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>هل أنت على درايةً بالمعايير الواجب مراعاتها عند إنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>هل تجديت دورات في تصميم وإنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>60%</td>
<td>40%</td>
</tr>
<tr>
<td>هل تعود اكسب مهارات تصميم وإنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>25%</td>
<td>75%</td>
</tr>
<tr>
<td>هل كنت بإنتاج نموذج تعليمي افتراضي من قبل؟</td>
<td></td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>هل تستطيع أن تتميز بين برامج تصميم وبرامج إنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>75%</td>
<td>25%</td>
</tr>
<tr>
<td>هل تجديد استخدام بعض برامج تصميم أو إنتاج النماذج التعليمية الافتراضية؟</td>
<td></td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>هل تستطيع إضافة الألواح المختلفة لموضوع تعليمي افتراضي؟</td>
<td></td>
<td>30%</td>
<td>70%</td>
</tr>
<tr>
<td>هل تستطيع نشر نموذج تعليمي افتراضي عبر الويب؟</td>
<td></td>
<td>25%</td>
<td>75%</td>
</tr>
</tbody>
</table>
ويتضمن البحوثين بعد استرمانهم لنواتج الجدول السابق وجود حاجة ملحة لدى طلاب الفرقة الثالثة شعبية تكنولوجيا التعليم إلى تنمية مهاراتهم لتطوير النماذج التعليمية الافتراضية، كما أجري الباحثون مقابلة غير مقننة مع عينةًا عددها (20) طالبًا من طلاب الفرقة الرابعة شعبية تكنولوجيا التعليم للعام الجامعي 2021/2022.

وذلك في يوم ٨/١٢/٢٠٢٢م للتعرف على أهم المعلومات التي واجهتهم أثناء دراستهم لمرور النماذج والمجمسات التعليمية، وقد أجمعت طالب عينة المقابلة على أن: النماذج والمجمسات التعليمية قد درسها أكثر من مرة مع تكرار نفس المحتوى التعليمي الخاص بها دون أيّة إضافة جديدة للمعرفة النظرية والمعرفة العملية لديهم، وذلك في مقرر (مندل إلى تكنولوجيا التعليم) في الفصل الدراسي الأول للفرقة الأولى، ومقرر (إنتاج النماذج والمجمسات التعليمية) في الفصل الدراسي الأول للفرقة الثانية، وكذلك مقرر (المتحفا والمعرض التعليمي الإلكتروني) في الفصل الدراسي الأول للفرقة الثالثة، أكملوا على أن هذه المقررات الدراسية خالية من التكرار على برنامج محدد لبسبهم من خلاله مهارات إنتاج النماذج التعليمية الافتراضية فضلاً عن أن النماذج والمجمسات التعليمية التقليدية التي أنتجوها من الحجس والخشب والخاتم المادية الواقعة المتكونة لا تتمتع بخصائص الإتحادية والقابلية للاستخدام وقابلاً للنشر والتبادل مع المؤسسات التعليمية الأخرى، كما أن إنتاجها يكون مكلفًا جدًا لأنها تتطلب أدواتًا كثيرة وموادًا متكونة لإنتاجها ومن الممكن التعرض للخطر أثناء إنتاجها، إذا في أغلب الأحيان يتم الاستعانة بأحد الصناع لإنتاجها وبعد ما يتم عملية الإنتاج -غالبًا- لم يتم تسليمها للقائم بتدريس الجانب العملي مثلما حالت جائحة كورونا من قبل الطلاب وبين تسليم مشاريعهم للكلية.

وإن كان المنتج التعليمي افتراضيًا لساعد الطالب على إرساله عبر منصات التعلم المتكونة بسهولة ويسر إلى المعلم لتقويمه له مع إعطاء التغذية الراجعة...
التناسية لكل طالب على حدٍ، فتتعلم من أخطائه ويدعم جوانب ضعفه أثناء عمليتي التصاميم والإنجاز، كما أن أغلب النماذج والمجسمات التعليمية التقليدية التي أُنتجت من قبل تصبح بلا قيمة تعليمية بعد عملية التنقيم - إن تمت - ولا يستطيع الطالب الذي فُتحت له بعد عناء أن يحتفظ بها بعد تقييمها مما يشعره بعدم الرضا تجاه إنتاج تلك النماذج والمجسمات التعليمية، وإن كانت هذه النماذج التعليمية إفترضية لاحتفظ بها أصحابها بعد تقييمها، وتدانوها مع بعضهم البعض ومع الطلاب الجدد.

تحديد مشكلة البحث:

وتأسِّستا على ما سبق من نتائج الدراسة الاستكشافية وبما أسفرت عنه من حاجة طلاب الفرقة الثالثة شعبة تكنولوجيا التعليم إلى تنمية جوانب المعرفية والأدائية لمهارات تطوير النماذج التعليمية الإفترضية لديهم، وفي ضوء نتائج الدراسات السابقة، وتشخيصات المؤتمرات والندوات العلمية، فيمكن صياغة مشكلة البحث الحالي في العبارة التقريرية التالية:

"يوجد حاجة ملحة إلى تحديد قائمة بمهارات تطوير النماذج التعليمية الإفترضية المطلوبة تتميتها لدى طلاب تكنولوجيا التعليم".

كما يمكن تحديد السؤال الرئيس للبحث الحالي فيما يلي:

ما مهارات تطوير النماذج التعليمية الإفترضية المطلوبة تتميتها لدى طلاب تكنولوجيا التعليم؟

هدف البحث: ويمكن تحديد الهدف من البحث الحالي فيما يلي:

الوصول إلى قائمة مهارات تطوير النماذج التعليمية الإفترضية المطلوبة تتميتها لدى طلاب تكنولوجيا التعليم.
أهمية البحث: وتمثل أهمية البحث الحالي فيما يلي:

1. قد تفيد نتائج البحث في إكساب طالب الفرقة الثالثة تكنولوجيا التعليم مهارات تطوير النماذج التعليمية الافتراضية.
2. قد تسهم نتائج هذا البحث في توجيه الاهتمام لأهمية استخدام النماذج التعليمية الافتراضية في العملية التعليمية.

منهج البحث:

ويتبع هذا البحث المنهج الوصفي التحليلي في عرض البحوث ودراسة وتحليلها لاستخلاص المهارات ثم عرضها على مجموعة من الأساتذة والخبراء المتخصصين في مجال تكنولوجيا التعليم، لاجزائها.

خطوات البحث: ولقد سار البحث الحالي وفق الخطوات التالية:

1. إجراء دراسة مسحية تحليلية للأدبيات والدراسات المرتبطة بموضوع البحث، وذلك بغرض إعداد قائمة مهارات تطوير النماذج التعليمية الافتراضية.
2. إعداد الصورة المبتدئة لقائمة مهارات تطوير النماذج التعليمية الافتراضية.
3. عرض قائمة المهارات في صورتها المبتدئة على مجموعة من أساتذة تكنولوجيا التعليم والخريجو المستخدمين في البرنامج ثم تعديلها في ضوء آرائهم وملاحظاتهم واقتراحاتهم لتصبح في صورتها النهائية.
4. التوصل إلى الصورة النهائية لقائمة مهارات تطوير النماذج التعليمية الافتراضية.

مصطلحات البحث:

Virtual Instructional Models - النماذج التعليمية الافتراضية
(ريهام الغول، 2008، 89) بأنها: منظور ثلاثي الأبعاد يشبه الواقع الأصلي في أي

153
 Skills of Developing virtual Instructional Models

ويعترف الباحثون إجرايًا بأنها مجموعة من الجوانب المعرفية والأدائية التي يجب توفرها لدى طلاب الفرقة الثالثة شعبة تكنولوجيا التعليم التي تمكنهم من تصميم وإنتاج النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad المتوقع إتقانها من خلال المعالجة البحثية الحالية، والتي تقاس إجرايًا من خلال بطاقة الملاحظة المُعدة لهذا الغرض.
الإطار النظري للبحث:

دور النماذج التعليمية الافتراضية في العملية التعليمية ومهارات إنتاجها

سيتناول الإطار النظري للبحث محاورين رئيسين، أحدهما: يتناول مفهوم النماذج الافتراضية، ومكوناتها، وخصائصها، وأنواعها وأهميتها، وميترات تصميمها وتنوعها بواسطة الحاسب الآلي، ومرحلتها إنتاجها، ومعايير ومعايير وأسس إنتاجها، وأهم نظريات التعليم والتعلم الداعمة لتوظيفها في العملية التعليمية، والدراسات المؤكدة على فاعليتها في التعليم، أما المحاور الأخرى: فهو يتوافق عددًا من البرامج التي يمكن استخدامها في تصميم وإنتاج النماذج التعليمية الافتراضية، ثم يُعرف برنامج (Tinker cad)، ويسرد ميترات تبني الباحثين له في تصميم وإنتاج النماذج التعليمية الافتراضية.

المحور الأول: النماذج التعليمية الافتراضية

Virtual Instructional Models

تعد النماذج التعليمية الافتراضية واحدة من أهم الوسائل التعليمية المستحدثة التي يتم تصميمها وإنتاجها بواسطة البرامج الكمبيوترية المتخصصة في التصميمات ثلاثية الأبعاد، وفي الآونة الأخيرة أصبحت هذه النوعية من النماذج ذات شهرة واسعة، وذلك بسبب قدرتها على تجسيد صور ورسومات يصعب إنتاجها في الواقع، نظرًا لخطورتها، أو تكلفتها العالية، أو عدم توفر أدوات لتجسيد هذه الصور والرسومات في واقع المتعلمين؛ ويتناول المحور التالي النماذج التعليمية الافتراضية من حيث ما يلي:

1- مفهوم النماذج التعليمية الافتراضية.

لقد تعددت وتتنوعت تعريفات النماذج التعليمية الافتراضية بحسب الدراسات والبحوث السابقة التي تتكونها بالبحث والدراسة والاستخدام؛ وفيما يلي عرض لبعض...
هذه التعرفات حيث يعرّف وليد دسوقي (2014) بأنها: عناصر ثلاثية الأبعاد تُنتج بواسطة برامج التصميم التي تعتمد على الوحدات البنائية الثلاثية الأبعاد والتي يطلق عليها اسم (Voxel)، ثم يتم إكساؤها بالخامات الافتراضية، وتعيين طبيعة الإضاءة المناسبة لها، وتوزيعها، ونشر الكاميرات الافتراضية حولها في الفراغ المحيط بها، وأخيرًا إجراء عملية التصيير، لإخراج نموذج على درجة عالية من الواقعية.

كما يعرفها سليك (2016،p303) بأنها تمثل للواقع ومحاكاة له، وتستخدم كوسائل تعليمية يمكن الاستفادة منها في عملية التعلم التعليمي، ويتم عرضها من أية زاوية، ويمكن تغييرها، وتدويرها، وتحكم فيها باستخدام برامج كمبيوترية متخصصة، ويعتمد بناء أي نموذج على ثلاثة محاور وهي: الطول، والعرض، والارتفاع، ويرى الباحث أن النماذج التعليمية الافتراضية هي تمثيلات رسوماتية.
يمكن إنتاجها والتعامل معها وتحريكها وتدويرها في الفراخ حتى يمكن رؤيتها من جميع الجوانب والزوايا، ويتم تصميمها عن طريق برامج تصميم ثلاثي الأبعاد (3D) حتى تحاكي الواقع بدقة متناهية فتجعل الطلاب أكثر استغراراً وانغماسية في الموقف التعليمي.

2- مكونات النماذج التعليمية الافتراضية:

ويشير بامفورد (2011, p15) إلى ثلاثة مكونات للنماذج التعليمية الافتراضية وهي:

أ. الأوجه؛ ونعد الأوجه السمة الرئيسة للنموذج التعليمي الافتراضي لأن أي نموذج تعليمي افتراضي يكون من عدة أوجه من الأشكال الهندسية، وقد تكون هذه النماذج ذات ثلاثة أوجه أو أكثر من ذلك.

ب. الهدف: وهي عبارة عن اجتماع أو التقاء لأي نقاطين على سطح النموذج التعليمي الافتراضي.

ج. النقاط: وهي نتاج التقاء أكثر من حافة ويتم تعديل النموذج التعليمي الافتراضي (x,y,z) وهو الأسلوب الأكثر من خلال هذه النقاط الموجودة على المحاور الثلاثة استخدامًا في نمذجة النماذج التعليمية الافتراضية.

3- خصائص النماذج التعليمية الافتراضية:

وبرى هشام العشيري (2011, 42) أن النماذج التعليمية الافتراضية تتميز بكثير من الخصائص التي يمكن أن تثرى بيئة التعلم ومنها أنها تعمل على عرض المعلومات بصورة أكثر واقعية، وبالتالي تزيد الدافعية نحو عملية التعلم ونحو المادة الدراسية، وتوصيل المعلومات وتوضيح الأفكار بطريقة مبسطة وسهلة ومباشرة دون عناية، وتسهيل الانتقال بين الموضوعات المعرضة بسلاسة، مما يؤدي إلى الإحساس بالمتعبة، والاذاعة، والتشويق، والإبداع، وخلق روح التنافس، وحذب الانتباه، وترك الملل، وتقديم المعلومات للمتعلمين بطريقة فعالة، حيث إن تقديم هذه
المجلد (93) العدد (69) الجزء (2) أبريل 2004

الأفكار والمعلومات والمهارات عبر النماذج التعليمية الافتراضية، وإمكانية التقليل بينها يزيد من وضوح الشرح وعرض المفاهيم والخبرات أمام المعلمين بدلاً من الاسترسلال اللطفي المجرد العقيم، ومن ثم تعديل اتجاهات الطلاب إيجابًا نحو كافة المقررات الدراسية.

كما يصف ممدوح عقل (1362 الف) النماذج التعليمية الافتراضية بكونها تطورًا وامتدادًا للصور والرسومات ثنائية البعد وتم معالجتها بواسطة البرامج الكمبيوترية لتحول لوسيط تعليمي ثلاثي الأبعاد يسم بالخصائص التالية:

التحجيم: حيث يستطيع مصمم النماذج التعليمية الافتراضية التحكم بسهولة ويسر في تكبير أو تفكيك النموذج المصمم حسب حاجة المتعلم من خلال تعديل أو تحرير النسب البارامترية للمحاور الثلاثة الطول أو العرض أو الارتفاع.

الدوران: حيث يمكن تدوير النماذج في أي محور من المحاور الثلاثة لتنمية التفكير البصري لدى المتعلم (X,Y,Z) سواء الطول أو العرض أو الارتفاع.

الإزالة: حيث يمكن حريك النموذج أمام المتعلمين وذلك بتغيير مكانه أو موقعه سواء بالبعد أو القرب من مستوى مشاهدة المتعلمين لـ التباين.

التداخل: عند تداخل نموذجين فإن النموذج المكتمل يظهر كأنه فوق النموذج غير المكتمل أو قد يتكون نموذجًا جديدًا نتيجة لهذا التداخل والدمج بين النماذج.
المجلة كلية التربية – جامعة دمشق
المجلد (39) العدد (98) الجزء (3) أبريل 2024

كلما بُعدت المسافة قلت تفاصيل النموذج، ويقصد بالبنية المواد التي يتكون منها الجسم فشكل بعض الأجزاء يعاني إحساساً بالندامة، بينما يعاني البعض الآخر إحساساً بالخشونة.

الظل: حيث يوحي ظل النموذج بوجود أكثر من بعيد له.
وتضيف شيماء خليل (2018) لخصائص النماذج التعليمية الافتراضية كونها تتسم بما يلي:

الدقة والوضوح: حيث تمتاز النماذج التعليمية الافتراضية بإمكانية التحكم في تفاصيلها، وذلك عن طريق زيادة عدد الوحدات البينانية لكل بوصة أثناء ضبط إعدادات التصوير والعرض لها.

المرونة: تتميز النماذج التعليمية الافتراضية بالمرونة العالية أثناء تصميمها وإنتاجها من حيث إمكانية حذف، أو إضافة العناصر إليها، والتحكم في سمات هذه النماذج لإخراج العمل الذي يجسد رؤية موجودة في مخيلته المصمم.

التبادل: إن تصميم وإنتاج النماذج التعليمية بشكل رقمي وإخراجها بصيغة رقمية يسهل عملية تخزينها على وسائط التخزين الرقمية المختلفة، مما يعطي فرصاً كبيرة لتبادلها عبر البريد الإلكتروني وسهولة نشرها وتبادلها على صفحات الإنترنت.

المعالجة: تتسام النماذج التعليمية الافتراضية بالمرونة العالية في معالجتها مقارنة بالنماذج التقليدية، حيث يمكن معالجتها وتعديلها من خلال أجهزة الكمبيوتر في أي وقت وأي مكان بواسطة برامج التصميم ثلاثي الأبعاد المتصلة.

4- مميزات النماذج التعليمية الافتراضية:

(Ford, S., & Minshall, T. 2019, p135)
ويشير كل من فورد ومينشل إلى عدد من مميزات النماذج التعليمية الافتراضية وتتمثل فيما يلي: إمكانية تلافي الأخطار المتوقعة في العالم الحقيقي مثل: دراسة المفاعلات أو قيادة الطائرة، تقديم
المجلد (39) العدد (89) الجزء (2) إبريل 2004

المعلومات للطالب بطريقة تشبه الواقع المحسوس الذي يعيشه المتعلم ليتم تحويل المعلومات المجردة إلى الشكل الواقعي وتحسين وتيسير وعميق محتوى المادة التعليمية، والسعة والشمولية للمعلومات وإمكانية ربطها بمصادر المعلومات من مراجع وكتب إلكترونية ومواقع مختلفة مع قدرتها على تنمية مهارات التعلم الفردي والذاتي ومهارات النقد والتحليل والاستنتاج لدى المتعلمين، وقدرة المتعلمين على الاحتفاظ بالمعلومات المكتشفة من خلالها، وعلى ذلك تهيئة الطلاب للتعامل مع مشكلاتهم ذاتية الحياتية الحقيقية.

ويرى الباحث أن النماذج التعليمية الافتراضية تعد تمثيلاً للواقع المجرد الذي قد يصعب إدراكه بالحواس فهي تفسر الحقائق العلمية المجردة لتسهل عملية إدراكها، وإمكانية التحكم في حجمها وسرعتها فيمكن أن تبين الميكروبات والفيروسات التي لا ترى إلا بالعين المجردة بأنها كبيرة وتحرك، وذلك لتوضيح الحقائق العلمية، وتيسير وبساطة المعلومات المختلفة والأشياء، وإضافة الفكاهة إلى الحقيقة الجامدة، وتيسير وبساطة المعلومات المعقدة لإبراز العيوب أو علاج مشكلة قد يعجز أي وسيلة تعليمي آخر عن علاجها.

- أنواع النماذج التعليمية الافتراضية:

1) النماذج التعليمية الافتراضية التفاعلية: وتستخدمن لتوضيح العلاقات بين الأجزاء الداخلية للشيء الأصلي ودراسة كل جزء على حدة، ويمتاز هذا النموذج بإمكانية تفاعل المستخدم معه من حيث فك وتركيب أحد أجزائه.
2) النماذج التعليمية الافتراضية المتحركة: وتهتم هذه النماذج بتوضيح العمليات والتحركات بجهات أو آلة معقدة الوظائف مع تغيير حجم بعض أجزائها فتستبدل الأجزاء المشتركة للانتباه عن الجزء الرئيس الذي يراد توضيحه، ويمكن تكبير هذا الجزء حتى يمكن دراسته بدقة، وذلك للتأكيد والتركيز على بعض الأجزاء.
وتوضيحها وإبراز عملها مثل: نموذج تعليمي افتراضي يوضح حركة التروس في الساعة.

المراجعة التعليمية الافتراضية الثابتة: وتعتبر هذه أنواع النماذج التعليمية الافتراضية لارتفاعها بالشكل الخارجي للشيء الذي تمثله تمثيلاً صادقاً سواء في النسب أو الأجزاء، أو الألوان؛ وغيرها من الصفات العامة مثل: نموذج تعليمي افتراضي لجهاز كمبيوتر.

النماذج التعليمية الافتراضية المنطقية: وهي نماذج لا تمثل شيئاً واقعيًا تمثيلاً تصويرياً، وإنما تركز إلى العلاقات الفكرية، أو الرياضياتية، أو العملية التي تجسدها؛ كنموذج تعليمي افتراضي لتركيب الذرة.

النماذج التعليمية الافتراضية البسيطة: وهي نماذج ثلاثية الأبعاد لا تشتمل على تفاصيل وافية أو دقيقة عن الشيء أو أي جزء منه فيما عدا الشكل الذي ترمز له، كنموذج لبعض الأشكال الهندسية مثل: المربع، ومثالي المستطيلات، والمخروط.

المراجعة التعليمية الافتراضية المشهودة: وهي محاكاة للواقع أو لجزء منه أو تمثل فكرة تمثيلاً ثلاثي الأبعاد باستخدام الإضاءة والكاميرات الافتراضية في إنتاج مشهد ثلاثي الأبعاد بشكل ما يقرب إلى الواقع مع استخدام أحجام طبيعية، أو مصغرة، أو مكبرة؛ لتوضيح طبيعة البيئة التي توجد فيها المعروضات؛ كمشهد ثلاثي الأبعاد لمنطقة بركانية.

كما أضاف باسم الجيدي (2019، 87ـ86) إلى هذه الأنواع ما يلي: نموذج الإطار السلكي (Wire frame Modeling)؛ ويعد من الأنواع الرئيسية للنماذج ثلاثية الأبعاد وهو عبارة عن سلسلة من الخطوط ثنائية الأبعاد أو الأقواس الدائرية التي يتم إعطاؤها بعذا تانيًا يطلق عليه الارتفاع.
المجلد (٩٣) العدد (٠٨) الجزء (٢) أبريل ٢٠٢٤

(٢) النموذج السطحي (Surface Modeling)

وهو عبارة عن غطاء رقيق ثلاثي الأبعاد يتم تشكيله بدقة متناهية تحتوى على معلومات عن الحواف الجانبية للعناصر ويوضح المسافة بين هذه الحواف.

(٣) النموذج المصمته (Solid Modeling)

ويعد من أكثر النماذج اكتمالاً للمعلومات حيث إن عملية إنشائه تتم بشكل مباشر ودقيق فهي رسومات تجمع بين البيانات الهندسية، وبيانات الأشكال المجمسة وبالتالي فإن النماذج المصمته تحتوى على بيانات كافية تقلل من نسبة حدوث الخطأ بها.

٦- مبررات إنتاج النماذج التعليمية باستخدام الكمبيوتر:

دخل الكمبيوتر مجالات مختلفة من الحياة وكان من الطبيعي أن يفرض نفسه كأداة قوية في مجال التصميم والإنتاج خاصة في السنوات الأخيرة، حيث يشير صالح الثويني (٢٠١٨ ،1٢) إلى عدد من مبادرات استخدام الكمبيوتر في إنتاج النماذج التعليمية الافتراضية والتي يمكن توضيحها فيما يلي:

١) زيادة الإنتاجية: ونرى تحقق تقليل الوقت اللازم للتركيب والتحليل وإنجاز الرسومات والتصاميم وتترجم زيادة الإنتاجية تقليل التكلفة، والوقت اللازم لإكمال المشروع.

٢) تحسين نوعية الإنتاج: إن إنتاج النماذج التعليمية باستخدام الكمبيوتر يتيح للمنتج إنجاز تحليقات كمية دقيقة للمنتج، وكذلك عددًا كبيرًا من النماذج البديلة التي يمكن اختيارها، كما أن الأخطاء في المنتج النهائي أقل بسبب الدقة العالية التي يوفرها النظام، وهذه العوامل تقوى على نماذج تعليمية افتراضية بشكل أفضل وأكثر دقة وكفاءة تعليمية.

٣) تحسين تبادل الأفكار: يُعد النماذج التعليمية الافتراضية لغة دولية تخطى عوائق الترجمة واستخدام الكمبيوتر في تصميمها يؤدي إلى نماذج تعليمية أفضل، إلى مواصفات خيالية في الإنتاج، وإلى تقليل الأخطاء، وبالتالي يمكن الحصول على
Namads تعلمية افتراضية مفهومة للجميع بغض النظر عن لغتهم وذلك لتحقيق الأهداف التعليمية المشروعة بكفاءة وفاعلية.

4) التكلفة المنخفضة: لا يحتاج إنتاج النماذج التعليمية الافتراضية إلى شراء معدات وخامات أو تحمل نفقات باهضة؛ حيث أن البرامج الكمبيوترية المسألة عن إنتاج هذه النوعية من النماذج توفر الكثير من النفقات والتكاليف الباهظة التي تحتاجها النماذج الحقيقية.

5) سهولة التداول: إن عملية تخزين النماذج التعليمية الافتراضية على الوسائط الرقمية المختلفة بسرية عملية تداولها عبر البريد الإلكتروني، ونشرها على صفحات الإنترنت، وتنظيم إدارة بيانات التعلم الإلكتروني.

- القيمة التربوية للنماذج الافتراضية:

وتعد النماذج التعليمية الافتراضية إحدى ركائز الوسائط المتعددة، ولها العديد من الفوائد التربوية التي يمكن أن تثري بيئات التعلم، وقد أشار إسماعيل حسون، ونفين السيد (2013، 92) إلى أهمها في كونها: تزيد من تحصيل الطلاب من خلال توفير فرصا تعليمية كثيرة ومرنة لهم فتزيد من فاعلية العملية التعليمية برمتها، وتتولى على تحسين مخرجاتها النوعية، كما أنها تزيد من دافعية الطلاب نحو التعلم، والمادة الدراسية، وتتوفر بيئة تعلم مثيرة وذكية تتخطى حاجزي الزمان والمكان، وتساعد على الاحتفاظ بالمعلومات التي تبلورت في ذاكرة المتعلمين وتحمل على بقاء أثر التعلم في أذهانهم فضلا عن كونها تختصر الوقت والجهد والتكلفة المادية الباهظة.

بينما أشارت دراسة محمد سالم (2018) إلى عدد من الفوائد التربوية الأخرى التي تحققها النماذج التعليمية الافتراضية وهي أنها: تتغلب على مشكلة صعوبات الحجم من خلال تصغير النموذج أو تكبيره مع مراعاة التوازن بين أبعاده تُظهر (الطول-العرض- الارتفاع) للنماذج مع إمكانية تدويرها مما يسهل العرض...
المجلد (93) العدد (68) الجزء (2) أبريل 2004

تجميع المدركات الكاملة والصحيفة للشيء الذي تمثله، كما أنها قد تحقق تأثير الوسائل التعليمية الأخرى من حيث شدة الإثارة وحذب انتباه المتعلمين لها؛ فهي تعد وسيلة اتصال محببة لكافة المتعلمين على اختلاف أعمارهم ومراحلهم الدراسية المتغيرة كبارًا وصغارًا، وإضافةً لما سبق ذكره من فوائد أنها تمثل الواقع المجرد الذي قد يصعب إدراكه بالحوار؛ حيث يمكن أن تنشر النماذج التعليمية الافتراضية الحقائق العلمية المجردة بشكل يسهل إدراكمها، وتساعد على انخراط الطلاب في بيئة التعلم وجعلها أكثر واقعية، وذلك نظرًا لقدرتها على عرض خبرات أكثر واقعية من الكتب الدراسية، وتعزز بمثابة أداة مساعدة لشرح العلوم والظواهر المعقدة مثل: العلاقات الوظيفية والهيكلية بين مكونات الأشياء، وتقدم للمتعلمين أساسًا ماديًا للفكر الإدراكي ومن ثم نقل من استخدام الشرح اللفظي المجرد للتعبير عن المحتوى التعليمي فهي توفر حلولاً جذرية لحل مشكلات تدريس المقررات الأدبية والعلمية وهي وسيلة من وسائل التطوير التكنولوجي الحديث في التعليم لتوصيل المناهج التعليمية من أيسر الطرق لكافه المتعلمين.

8- مراحل إنتاج النماذج التعليمية الافتراضية:

تتيح الإمكانيات الرقمية الهائلة والمتعددة للكمبيوتر تفنيذ عدد من المثيرات المرئية والتأثيرات البصرية المختلفة، فالتصميم بالبرامج الكمبيوترية تتعدد مزاياها، وقد استفاد المختصون في إنتاج النماذج التعليمية الافتراضية من هذه الإمكانيات الهائلة للكمبيوتر؛ حيث تم توظيف البرامج المتخصصة لهذا الغرض والحصول على منتجات ذات جودة عالية، وللقيام بذلك يتم المرور بحزمة من المراحل من المراحل تتمثل الطريقة المثلى للحصول على نموذج تعليمي افتراضي يمكن الاستفادة منه، وتوظيفه في التعليمية التعليمية.

وقد تناولت عدد من الدراسات والبحوث السابقة مراحل إنتاج النماذج التعليمية الافتراضية منها دراسة كومبس(2011) حيث أشارت إلى أن عملية إنتاج
المجلة التعليمية الاقتراعية تمر بستة مراحل هي: مرحلة التخطيط، والنذجة، والإضاءة، والإكساء، والتحريك، وأخيرًا التصدير، بينما تناولت دراسة وليد دسوقي (2014) مراحل إنتاج النماذج التعليمية الاقتراعية من خلال عدة مراحل وهي مرحلة الرسم التخطيطي، مرحلة النذجة، مرحلة إكساء المجمسات بالخامات الاقتراعية، مرحلة تعين إضاءة المشهد، والمرحلة الخامسة هي مرحلة تجهيز الكاميرات، والمرحلة السادسة والأخيرة هي مرحلة تصوير المشهد، كما أشارت دراسة شيماخل()] (2018) إلى أن عملية إنتاج النماذج التعليمية الاقتراعية تمر بمجموعة متراكبة من الخطوات والمراحل تؤثر كل منها في جودة المنتج النهائي، ويمكن تقسيمها بالتالي إلى ثلاث مراحل أساسية وهي النذجة، وضبط إعدادات المشهد، والإخراج، أما دراسة باسم الجندي (2019) فقد حددت مراحل إنتاج النماذج التعليمية الاقتراعية في ست مراحل وهي التخطيط، النذجة، الإكساء، التحريك، تحديد زوايا الرؤية، التحريك، وأخيرًا مرحلة الإخراج، ويمكن التعريف بالشرح والتوضيح لبعض هذه المراحل فيما يلي من سطور:

1) المرحلة الأولى (الرسم التخطيطي): ويعد الرسم التخطيطي هو المرحلة الأولى لإنتاج النماذج التعليمية الاقتراعية، وتلتقي عادة باستخدام القلم الرصاص باليد اليد الحرة، ويضع فيها المصمم الخلوط الأساسية للنموذج الذي يريد إنتاجه، ويحاول إظهار البدع الثالث في هذاالرسم، ويستفيد المصمم في هذه المرحلة شبكة المعلومات الدولية من خلال تصفح واستعراض عدد من النماذج الجاهزة والمعدة مسبقا، والتي من شأنها أن تزوده بمعلومات وخصائص الأشكال التي يريد نمذجتها.

2) المرحلة الثانية (النذجة): وهي المرحلة الثانية لإنتاج النماذج التعليمية الاقتراعية، وفيها تم تحويل الرسم التخطيطي للنموذج التعليمي إلى عناصر
رقمية باستخدام برامج التصميم ثلاثي الأبعاد لاستخدامها لاحقًا في النموذج التعليمي، ونتائج عملية النمذجة يطلق عليه اسم "نموذج".

3) المرحلة الثالثة (إكساء النموذج بالخامات الافتراضية): وبعد الانتهاء من مرحلة النمذجة تأتي المرحلة التالية، وهي إكساء النموذج بالخامات الافتراضية؛ وفيها تم تغطية سطح النموذج ثلاثي الأبعاد بخامات افتراضية تُحاكي الخامات الواقعة، حيث تُوفر برامج التصميم ثلاثي الأبعاد عدد من الخامات الافتراضية الجاهزة والمدرجة في مكتبة البرنامج والتي تُيسر على المصممين إكساء النموذج بخامات تُحاكي الخامات الواقعة.

4) المرحلة الرابعة (الإضاءة): وفي هذه المرحلة يتم إضافة مصادر ضوئية للنموذج التعليمي الافتراضي، وذلك من خلال إضافة الإضاءة المتوفرة في البرنامج، والتي تُحاكي كافة أشكال الإضاءة الواقعة؛ مما يعطي للمتعلم الشعور بواقعية النموذج التعليمي.

5) المرحلة الخامسة (ضبط وتجهيز الكاميرات الافتراضية): وفي هذه المرحلة يتم ضبط إعدادات الكاميرات الافتراضية المتمثلة في ضبط درجة الوضوح والتركيز، والبعد البؤري؛ للحصول على نتائج تُحاكي ما يمكن الحصول عليه من خلال رؤية الشيء الحقيقي بالعين البشرية، بالإضافة إلى التحكم في زوايا رؤية النموذج التعليمي الافتراضي لعرضه بأكثر من وضوحة، وذلك بشكل رأسي أو أفقي أو عرضه من الأمام أو من الخلف، وعرض كافة تفاصيله باستخدام زوايا الرؤية المختلفة والتي توحى للمتعلم بأنه جزء من النموذج الذي يراه ويعتاد معه.

6) المرحلة السادسة (التحريك): وفي هذه المرحلة يتم إكساب النموذج التعليمي الافتراضي حركة من خلال حساب سرعة حركة الإطارات المعروضة للنموذج، باستخدام ما يوفره البرنامج الكمبيوتر من إمكانيات لحساب سرعة حركة
النموذج: بحيث تضاهي سرعة الحركة الحقيقية للشيء الواقع، إضافة إلى الدور البارز للكاميرات الافتراضية والأضواء في ظهور حركة النموذج والتي تعمل على تغيير لونه وحالته، لإعطاء المتعلم الشعور بواقعية النموذج التعليمي الافتراضي.

7) المرحلة السابقة (التصوير): وهي المرحلة الأخيرة من مراحل إنتاج النماذج التعليمية الافتراضية، وفيها يتم ضبط إعدادات النموذج قبل حفظه بصورة نهائية؛ ومن هذه الإعدادات اختيار صيغة الحفظ، وإعدادات التصوير الخاصة بالإضاءة، والإضاءة، والكاميرات الافتراضية، وكل ما يتاسب مع طبيعة النموذج الحقيقي للوصول إلى نموذج يحاكي الواقع، وجدير بالذكر أن هذه المرحلة قد تستغرق فترة زمنية غير محددة نسبيًا تتوقف على إمكانيات جهاز الكمبيوتر المستخدم في عملية المعالجة والتصوير.

9- معايير تصميم النماذج ثلاثية الأبعاد:

وهناك مجموعة من معايير تصميم النماذج التعليمية الافتراضية حتى يتم تصميمها بشكل صحيح وسليم، لتحقيق الهدف التعليمي الأمثل منها حيث يشير باسم الجندي (2019) إلى عدد منها وتتمثل فيما يلي:

1) الحركة المحورية: وينصده بها الحركة التي تظهر في الخطوط الخارجية للنموذج التعليمية الافتراضية، وكما تظهر في اتجاه محورها الرئيس.

2) التجمع الفضائي المرن: وتتمثل في ظهور أجزاء النموذج وكأنها تتألف مع بعضها البعض، من خلال التركيب والتفاعل وتماس الأركان والاختراق وتماس الأوجه والشد الفضائي بين أجزاء الرسوم.

3) النمذجة البارامترية: وينصده بها الأسس الرقمية للحجم، والأشكال، والحيز الفضائي مثل القطر ونصف القطر، الطول، الارتفاع، العرض، الزوايا وغيرها.

297
من المعايير الهندسية التي تعد الهيكل الأساسي في بناء وتعديل النماذج التعليمية الإقراراتية.

4) دمج الذاوية: يقصد بها قدرة النموذج التعليمي الإقراري على التعامل مع المنحنينات، وإمكانية دمج الذاوية بين أجزاء النموذج، أو بين نموذجين متبادين باستخدام التحكم الرقمي.

5) البعيد الفراغي: ويدعى به استخدام البعيد الثالث لوضع الأشكال في مختبر المتعلم من خلال تمثيل العلاقات المكانية، أو الفراغية للأشياء بالطريقة التي تظهر للعين البشرية، وكأنها حقيقة، وذلك حتى يسهل على المتلقي إدراك الأشياء واستيعابها، حيث إن تصميم هذه النماذج يكون من خلال ثلاثة محاور متعامدة (y,x,z)، كما يوجد ثلاثة مستويات متعامدة أيضًا مع بعضها وهي (xy,xz,zy) ومثال على ذلك: تحويل الدائرة إلى أسطوانة، أو جعل المستطيل يتحول إلى متوازي مستطيلات.

6) توزيع مكونات الصورة: يعني وضع أجزاء الصورة في ترتيب فني مرغوب فيه، فالصورة المتزنة التي يكون فيها المجموع الكلي للعناصر الموجودة في أحد جوانب الصورة مكافئًا لمجموع العناصر الموجودة في الجانب الآخر.

10-أسس ومبادئ إنتاج النماذج التعليمية الإقرارية:

وتتم عملية تصميم وإنتاج النماذج التعليمية الإقرارية بمجموعة مترابطة من الخطوات والتي تؤثر كل منها على حدة في جودة المنتج النهائي وقد أشارت شيماء خليل (2018) أن يمكن تقسيمها إلى ثلاثة خطوات رئيسة وهي كالآتي:

1) النمذجة (Modeling): ويتضمن تكوين العناصر الفردية التي تستخدم لاحقًا في المشهد، وتتضمن عمليات النمذجة أيضًا على تعديل الأسطح، وإضافة الخامات وضبط خواص المواد مثل (اللون، اللمعان، الانتشار، الانعكاس، الشفافية، الظل، أو التعطي).
2) ضبط إعدادات المشهد:

(Scenario layout setup): ويتضمن إعداد المشهد وترتيب الأشياء الظاهرة والأضواء والكميرات وغيرها من الكيانات المكونة للمشهد الذي سيتم استخدامها لإنتاج صور ثابتة أو رسومات متحركة وتعد الإضاءة عنصرًا مهمًا في إعداد المشهد حيث إنها تساهم بشكل كبير في الجودة الجمالية والبصرية للمشهد النهائي.

3) الإخراج:

(Rendering): وهو العملية النهائية لإنشاء صورة واقعية أو مشهد الرسومات المتحركة وتعد عملية حفظ وإخراج صورة ثابتة أسرع من حفظ وإخراج الرسومات المتحركة، حيث يتم حفظ من عشرين إلى مائة وعشرين لقطة في الثانية الواحدة ليتم عرض هذه اللقطات في إطارات تتتابع بمعدل من أربع وعشرين إلى ثلاثين لقطة في الثانية الواحدة لتحقيق وهم الحركة.

١١-نظريات التعليم والتعلم التي تؤكد فاعلية النماذج التعليمية الإفتراضية في العملية التعليمية:

يوجد الكثير من نظريات التعليم والتعلم التي تفسر أهمية توظيف النماذج التعليمية الإفتراضية في العملية التعليمية، ومن أهمها:

نظرية معالجة المعلومات البصرية:

Theory Visual Information processing

وتبنى هذه النظرية أن عملية التعليم والتعلم يقومان على إدراك المعلومات أولاً ثم القيام بمعالجتها مؤقتاً ثم تخزينها بالذاكرة طويلة المدى، حيث يعتمد وجود المعلومات في ذاكرة المتعلم على مقدار أهميتها بالنسبة له، كما يعتمد وجودها في ذاكرته على قدرته على فهمها وتفصيلها، ومقدار الجهد الذي يبذله في عمل المخططات المعرفية لها، فالمعالجات يتم معالجتها بطريقة مسلسلة تحت سيطرة الانتباه الإنتقائي بحيث يتم تميز المشهد البصري في أبعاد منفصلة (اللون، الاتجاه، التكرار المكاني) إلى خصائص تقدم في نفس ثبت الانتباه يتم دمجها لتشكيل مفهومًا.
مقدراً، وهكذا يبدو أن الدرجة التي تتحكّم فيها المخططات العقلية بالعمليات المعينة المتعلقة بالإدراك تختلف، وبالتالي عند المستوى الأدنى فإن خصائص العرض البصري يتم دمجها لتشكل أشياء أكثر تعقيداً عن طريق التفاعل بين القنوات الإدراكية، وعليه يمكن أن يوجه المخطط الإدراكي المعالجة البصرية.

(محمد المرادي، 2012، 68)

وبتطبيق هذا المنظور يكون النتائج أن مقدار الجهد المطلوب لمعالجة نصوص معروضة أكبر من نظره المبذول لمعالجة عروض بصرية غير لطيفة، وكما قلت هذه العروض البصرية فإن المتعلم لا يقوم بمعالجة المعلومات على الوجه الأكمل، مما يؤدي إلى إعجه عن تذكر المعلومات المقدمة له فيما بعد.

(نبيل عزمي، 2009، 124)

وتفق هذه النظرية مع النماذج التعليمية الافتراضية التي تشتمل على: النصوص، والرسومات، والتمييزات، والإشارات، والنصوص الفائقة، وغيرها من الوسائط وتُعمل على تحسين عملية التذكر والاستدعاء، والترميز، واسترجاع المعلومات، مما يساعد على تقليل الحمل المعرفي على المتعلمين وسهولة تخزينهم للمعلومات واسترجاعها.

Cognitive Load Theory

ويردّ كوير، (1998، p.19) الاستخدام الكلي من النشاط العقلي المفترض على الذاكرة العاملة في لحظة من الزمن، وتفترض نظرية الحمل المعرفي أن المتعلم يمتلك ذاكرة مؤقتة محدودة السعة قادرة على استقبال ومعالجة عناصر محدودة من المعلومات، كما أنه يمتلك ذاكرة دائمة ذات سعة غير محدودة يخزن فيها المعلومات بعد معالجتها وأعمال التعلم الإيجابية تتطلب من الذاكرة المؤقتة المشاركة في فهم المواد الدراسية لترميز المعلومات في الذاكرة الدائمة، وفي حالة تزايد مصادر المعلومات بالذاكرة المؤقتة فإن ذلك يؤدي إلى...
إلى حمل زائد على المتعلم مما يعيق عملية التعلم الناجح، ويوجد ثلاثة أنواع للحمل المعرفي تنشأ من التعلم وتتمثل في:

1) حمل معرفي داخلي: يشير إلى درجة تعقيد المعلومات التي سنتم معالجتها، أو درجة الترابط بين عناصر المعلومات، وقد يفرض النظرية أن المعلومات المعقدة تتضمن مستوى أعلى من التفاعلية، وأن المعلومات أحادية العنصر لا يمكن تعلمها بمعزل عن العناصر الأخرى.

2) حمل معرفي وثيق الصلة بالموضوع: ينشأ من بناء مخططات عقلية وتخزينها في الذاكرة طويلة المدى.

3) حمل معرفي خارجي: يحدث بفعل الأسلوب الذي يُقدم به المعلومات، وطبقًا لنظرية الحمل المعرفي فإنه يجب تقليل الحمل المعرفي الداخلي والخارجي وتعظيم الحمل المعرفي وثيق الصلة بالموضوع وهذا يتحقق بتحسين مادة التعليم بحيث لا يتجاوز إجمالي الحمل المعرفي سعة الذاكرة العاملة في معالجة المعلومات، والحد من الحمل المعرفي الداخلي والخارجي يقي المتعلم من تشتيت انتباهه بمعالم غير المهمة، بينما تشجع زيادة الحمل المعرفي وثيق الصلة بالموضوع على التعامل بوعي مع بناء المخطط العقلي (محمد المرداي، 2012، 36-37).

وترتبط هذه النظرية مع النماذج التعليمية الافتراضية التي تخفف العبء المعرفي على المتعلم أثناء شرح أي درس تعليمي له فقد يفهم المتعلم من نموذج تعليمي افتراضي واحد ما لا يفهمه من آلاف الكلمات التي يسمعها أو يقرأها فالنموذج التعليمي الافتراضي يتناسب مع كل المتعلمين سواء كانوا مع ذوي البصر أو المعاقين، أو بصريين أو ذوي السمع، أو مع ذوي السمع أو بصريين (Morrison, 2005, p101).
نظرية التحكم (Control Theory)

وترجم هذه النظرية إلى مؤسهما وليام جلاسر (William Glasser) الذي رأى أن السلوك لا ينتج عن استجابة لمثير خارجي فقط، وإنما يدفعه ما يرغبه الفرد بشدة في ذات الوقت من تلبية حاجاته البشرية مثل الحاجة للبقاء والحب والحرية وغيرها من الحاجات البشرية وطبقًا لهذه النظرية فإنه إذا لم يُحفر المعلمان لأداء مهامهم التعليمية؛ فإنهم ينظرون لهذه المهام على أنها غير مناسبة لاحتياجاتهم الأساسية، ولذلك لا يد من ترك الحرية التامة للمتعلم لاتخاذ قراراته التعليمية بما يلائم احتياجاته ورغباته الفردية، وبالتالي تفترض هذه النظرية أن حرية المتعلم جانب مهم ضروري في التعلم الفعال؛ حيث ترى أن تحكم المتعلم في التعليم له جاذبية خاصة، فكما زادت درجة التحكم المتاحة للمتعلم في المواقف التعليمية كلما زادت فاعليتها، ويرجع السبب وراء ذلك إلى أن المتعلم سوف يعرف ما هو الأفضل بالنسبة لتعلمه، وسوف يتعامل مع هذه المعلومات وفقًا لذلك؛ مما يسهم هذا في جعل المتعلمين أكثر استقلالًا في تعلمهم، و أكثر مشاركة في تبادل المعلومات، وأكثر قدرةً على تحمل مسؤولية تعلمهم وتنحي النماذج التعليمية الافتراضية للمتعلمين حرية التفاعل معها الغوص في أدق تفاصيلها وتحريكها في جميع زواياها ومحاورها في تحدث عملية التعلم وتشكل الصورة الذهنية بشكل كامل لدى المتعلمين؛ فالمتعلم يحصل من خلالها على المعارف بنفسه دون تدخل من أحد، وهذا يؤثر مبادئ التعلم الحر والتعلم الذاتي، والتعلم المستمر، والتعلم مدى الحياة. (Funderstanding, 2006, pp. 1-2).

نظرية معالجة المعلومات (Information Processing Theory)

وتأتي هذه النظرية أن عملية التعليم مستمرة، ومتمصلة تبدأ من انتقال المعلومات من المستقبلات الحسية وتمر خلال الذاكرة قصيرة المدى، وربما تصل إلى الذاكرة طويلة المدى من خلال عملية الترميز والتمثيل، حتى تنتهي أخيرًا باستجابة المتعلم، ومن خلال هذه الدورة الرباعية تتكون الخريطة المعرفية للمتعلم.
وهذه هي الطريقة التي تنظم بها المعرفة في ذاكرة المتعلم طويلة المدى، ويختلف المتعلمون في طرق استقبالهم وتناولهم، ومعالجتهم، وتوزيعهم، واسترجاعهم للمعلومات بناءً على قدراتهم على اتخاذ القرار، وانتقاء استراتيجيات التحديد والتمثيل الذاتي لتلك المعلومات، معتمدين في ذلك على المخططات المعرفية والصور الذهنية التي كنّوها مسبقًا لإحداث ترابط بين المعلومات.

أمّن، ٢٠٠٠، ٢٤٤، (٤)

ولا شك أن النماذج التعليمية الافتراضية تعتمد على الربط بين الوسائط المتعددة لتكوين معلومات متكاملة في أذهان المتعلمين وتحقق أهداف تعليمية يعجز الشرح اللفظي العقلي عن تحقيقها على اختلاف المقرر الدراسية وتتنوع أهدافها.

نظرية التعلم الخبراتي (Experiential Learning Theory)

وبري هين (10, p, 1998, Hein) أن التعليم الخبراتي عملية ترجمة الأفكار المجردة لواقع ملموس يمارسه الناس في حياتهم وهو عملية دائرة تتكون من أربع عمليات وهي: الخبرات الملموسة، الملاحظة التأملية، التصورات المجردة، والتجربة النشط حيث ينخرط المتعلمون في الخبرات الجديدة ويتأمّلونها ويتصورونها ثم يدمجونها في الخبرات السابقة فالتعلم من خلال هذه النظريات يتحدد من خلال العمل والتجربة والملاحظة والتأمل، وتتسير النماذج التعليمية الافتراضية في ضوء نظرية التعلم الخبراتي حيث تقدم خبرات حسية للمتعلمين للتعامل مع المعروضات كما تقدم أنشطة يقوم بها المتعلمون فهم يلاحظون المعروضات ويتأمّلونها ويتصورونها ويجرونها ومن هنا يحدث التعلم وتتكون المعارة لدى كافة المتعلمين.

نظرية التعلم بالوسائط المتعددة (Multimedia Learning Theory)

لقد تحولت النظرة من التعلم المتمركز حول المعلم إلى التعلم المتمركز حول المتعلمن ليصبح إيجابيًا نشطًا يبني معرفته بنفسه، وهذا التحول ظهر نتيجة إعادة

٢٧٣
المجلد (93) العدد (89) الجزء (2) ابريل 2004

نظرية عملية التعلم نفسها وكيفية حدوثها، والبرجواز نظرية التعلم بالوسائط المتعددة
تم توضيح هذا التحول في الفهم بأن" التعلم يتضمن بناء المعنى من المواد المقدمة
للمتعلم من خلال استحضار المعلومات المناسبة وتكييفها عقليًا ثم ربطها بالمعرفة
الموجودة لدى المتعلمين مسبقًا. فالمواد التعليمية المقدمة للمتعلم بواسطة الوسائط
المتعددة تأخذ الشكلين التاليين: إما لفظية وتقدم على هيئة نصوص مكتوبة أو
مسموعة، أو صورية وتقدم على هيئة رسومات وصور وفيديو، أما بالنسبة لعملية
التعلم من خلال هذه النظرية فتتم في ثلاث خطوات وهي:

1- عمليات إنتاج الكلمات والصور: ويفسر أن استقبال الكلمات والصور لدى المتعلمين
باستخدام حاسة السمع والبصر وفي المرة الواحدة يتم استقبال المعلومات جزأء
من خلال القنوات المرئية والمسموعة حيث يتمكث في الذاكرة قصيرة المدى
محدودة السعة لحين معالجتها.

2- تنظيم الكلمات والصور: ويفسر أن تنظيم الكلمات والصور المنتقاة عقلًا بشكل
تمثيلي لنظرية وصورية متداخلة منطقية.

3- التكامل والدمج: وفي هذه الخطوة يحدث الربط بين التمثيلات العقلية المنظمة
الموجودة والمعرفة والخبرة السابقة المُستندتة لدى المتعلمين، ويتم بناء المعنى الذي
يستقر في الذاكرة طويلة المدى لحين استدعائه في حالة الأداء أو حل المشكلات
وبحسب هذه النظرية فإنها تشير إلى أن المواد التعليمية التي تجمع بين المواد
اللفظية والمواد الصورية تحقق نتائج تعلم أفضل من تلك التي تقدمها منفصلة
لأنها تسهل على المتعلمين عملية الدمج والتكامل بين الخبرة الجديدة والخبرة
الموجودة في الذاكرة طويلة المدى.

ويشير نبيل عزمي (2009، 1) إلى أن هذه النظرية تقوم على أربعة
مبادئ أساسية وهي:
1- المبدأ الأول (قناطين ثانويتان للتعلم): فالمتعلمون يملكون قناتين منفصلتين لمعالجة المواد المرئية/السورية والصوتية/اللغوية.
2- المبدأ الثاني (السعة المحدودة): فالمتعلمون يمكنهم معالجة فعليًا قطعة قليلة من المعلومات الواردة في كل قناة في المرة الواحدة.
3- المبدأ الثالث (المعالجة النشطة): فتعلم يحدث عندما ينجح المتعلم في استحضار المواد التعليمية الملائمة وتنظيمها في بناء متماسك من المعرفة السابقة الموجودة لديهم.
4- المبدأ الرابع (النقل والتحويل): فالمعارف والمهارات الجديدة المكتسبة تسكن في الذاكرة طويلة المدى ويتجلب عنها عند البداية أو حل مشكلة محددة.

ويعتقد الباحثون على النظرية السابقة بأن النماذج التعليمية الإفتراضية تقدم محتوياتها بشكل رقمي وهي تتألف من الوسائط المتعددة في تجمع بين النصوص والرسومات ثلاثية الأبعاد والأصوات والألواح والحركة وبالتالي فهي توفر الحواس المطلوبة للتعلم (السمع، البصر) كفانتين لمرور المعلومات للذاكرة النشطة، بحيث يحصل المتعلم على المعلومات المتعلقة بالمعلومات عند اختياره لها ومن ثم تدخل تلك المعلومات في بناء متماسك يتم معالجته ودمجه مع تلك المعارف السابقة التي قد تكون مكتسبة لدى المتعلم كخبرة سابقة، بحيث يكون مستعدًا لاسترجاعها عندما يوضع في موقف لحل مشكلة ما أو أداء مهارة معينة.

12- الدراسات التي أكدت فاعلية استخدام النماذج التعليمية الإفتراضية في العملية التعليمية:

أشنّت عدد من الأدبيات والدراسات السابقة إلى ضرورة تدريب طلاب تكنولوجيا التعليم على تصميم وإنتاج النماذج التعليمية ثلاثية الأبعاد مثل: دراسة باتولجا (2012) (Battulga), التي أشارت إلى أهمية استخدام نماذج تعليمية ثلاثية الأبعاد في فهم الهياكل التشريحيّة المعقدة، ودراسة فونج (2012) (Fong) التي هدفت...

المحور الثاني: برامج إنتاج النماذج التعليمية الافتراضية:

Programs for the production of Virtual Instructional Models:

يوجد مجموعة متنوعة من البرامج المستخدمة في تصميم وإنتاج النماذج التعليمية الافتراضية، وتعمل على أنواع مختلفة من أنظمة التشغيل، ومن أشهر هذه البرامج المستخدمة في إنتاج النماذج التعليمية الافتراضية برنامج اسكتش.
- أسباب ظهور وانتشار برامج إنتاج النماذج الإفتراضية على الساحة التربوية:

ويشير كل من هورتز وشولتز (H. Horowitz, S. S., & Schultz, P. H., 2014, p. 142) إلى أن برامج إنتاج النماذج التعليمية الإفتراضية بدأت في الظهور وقوة وبصورة سريعة وتطور رهيب على الساحة التربوية في مختلف دول العالم، وقد ساعد على ظهور هذه البرامج عدة أسباب أهمها: الحاجة لتسريع رسومات وصور يصعب تجسيدها في الواقع نظرًا لخطوطها، أو التكلفة المالية الباهظة، أو عدم وجود أدوات تجسد هذه الصور أو الرسومات، والمراعاة والقدرة على تغيير الزوايا أو تحريك الصور مع تقديم أسرع في المتغيرات التعليمية، مما يساهم في تحقيق فهم أفضل لدى المتعلمين؛ فعالم النماذج التعليمية الإفتراضية عالم تتحول فيه المسطحات إلى كتل مجسمة يمكنها الدوران حول محورها للنظر إليها من جميع الزوايا.

ولا تزال الشركات المُنْتَجة لبرامج الكمبيوتر تسعي لِتَقَدُّم لِلمصممين برامجها لتصميم نماذج ثلاثية الأبعاد التي لم تكن نتائجها الأولية تصل في مصايفها البصرية إلى النماذج التقليدية، حتى تتفاوت هذه الشركات فيما بينها، ولم تزل تنافس لتَقَدِّم أقرب النتائج للواقعية، وهذا التنافس والتطور في البرامج جعل لكل برنامج مميزات تميزه عن غيره، وصار لزاماً على مصممي النماذج التعليمية الإفتراضية البحث عن أنسب البرامج التي تنتج له الشكل النهائي الذي يريد وفق الغرض الوظيفي منه.
2- أهم برامج تصميم وإنتاج النماذج التعليمية الافتراضية:

وفيما يلي عرض لأشهر البرامج المستخدمة في تصميم وإنتاج النماذج التعليمية الافتراضية وأكثرها انتشارًا بين مصممي هذه النماذج:

- برنامج بليندر: Blender: وهو أحد البرامج المجانية المستخدمة في صناعة الرسومات ثلاثية الأبعاد مثل الصور المتحركة والثابتة والفيديو ووالرسومات المتحركة ثلاثية الأبعاد كما يعمل على تحرير الفيديوهات، ويعمل على أنظمة متعددة منها: (Linux & Windows) وهو من أكف البرامج، حيث لا يستهلك مساحة تخزينية كبيرة على أجهزة الحاسب الآلي الخاصة، وحجمه لا يتجاوز ال 100 ميجابايت، فهو يمكن تحميله على جهاز كمبيوتر يوجد به معالج: - 222 جيجا هرتز وحدة وصول عشوائي رام core2Ghzcpu

أو أكثر، أما اللغة المكتب بها البرنامج هي (C++ & Python)، ويعتبر في تلبية الصور وإنشاء ألعاب الفيديو، وإمكانية تحرير كل تفاصيل الصورة ثلاثية الأبعاد، وتميز بأنه مفتوح المصدر وما يجعل من السهل التصميم والإنتاج عليه، ويوجد به تأثيرات بصرية جاهزة للاستخدام، وتعديل الفيديوهات والرسومات المتحركة، وتزامن الصور مع الفيديو المعدل، ويضم مجموعة من الأدوات التي تساعد على عمليات النمذجة، وخدمات الإكساء، وتوزيع الإضاءة، ويضم البرنامج محركًا للنحت الرقمي الذي يتبع استخدام مجموعة مختلفة من الأدوات لنحت الجسم، وتحريره وتعديله وتركيبه كما لو كان قطعة من الصلصال، ويوجد به مجموعة كبيرة من الأدوات لتعديل الرسومات المتحركة، كما يوجد به محررًا للرسومات المتحركة، كما يتميز بواجهة احترافية للغاية ويمكن تخصيصها بالكامل، ويمكن الوصول إلى البرنامج من خلال الرابط التالي: https://www.blender.org/

- برنامج Autodesk 3D Max: برنامج Autodesk 3D Max وهو من أكثر برامج التصميم وتحريك وإخراج النماذج التعليمية الافتراضية شهرة وأكثرها شيوعًا، ويستخدم البرنامج في مجال
تصميم برمجيات الواقع الافتراضي، والألعاب ثلاثية الأبعاد، وأفلام الرسومات المتحركة؛ وغيرها من المجالات نظرًا لقدرته على رسم الأجسام، وإكسائها بالخامات الافتراضية، وإضافة المؤثرات عليها لتصبح أقرب ما يكون إلى الواقع، وهو من إنتاج شركة "Discreet" والتي تعتبر جزء من شركة "Autodesk". وهو متاح على الرابط التالي:
https://www.autodesk.com

التصميم ثلاثي الأبعاد وهو متاح على الرابط التالي:
Cinema 4D: برنامج
- وهو يستخدم في تصميم الرسومات ثلاثية الأبعاد المتحركة، وتحضير النماذج المعمارية، وتصميم الشخصيات الخاصة بألعاب الفيديو، وعمل رسومات ونماذج توضيحية، ويوفر البرنامج وقت المصممين نظرًا لسرعته وجودته في التصميم، حيث يعتبر البرنامج من أسرع برامج التصوير بعد برنامج "E-Image"، وهو من إنتاج شركة "Maxon" الرائدة في مجال إنتاج برمجيات
https://www.maxon.net

برنامج Z-brush: ويصنف البرنامج ضمن أفضل برامج التصميم ثلاثي الأبعاد وفقًا لتصريحات الشركة المنتجة له نظرًا لما يتمتع به من خصائص فريدة أهمها: خاصية النحت الرقمي، حيث يوفر البرنامج أدوات عالية الكفاءة لصناعة الوجوه والأجسام التي لا يمكن أن يتخيلها إلا المصمم المبدع، ويعتبر البرنامج ورشة فنية متكاملة ترضي كل المستخدمين لكونه يحاكي الواقع بوضوح وفوق الإيمagination، وقد صمم البرنامج نخبة من محترفي تصميم المؤثرات، وهو متاح على الرابط التالي:
https://www.zbrushcentral.com

برنامج Rhino: وهو برنامج للنموذجة وتصميم المجسمات عن طريق الخطوط والأشكال ومن ثم تحويلها إلى أسطح ومجسمات، ويشيع استخدام البرنامج في التصميم الصناعي، والهندسة المعمارية، وتصميم المجوهرات، والسيارات، والفن، وتصميم المثيرات، وكذلك الوسائط المتعددة، والرسومات البيانية؛ وهو من إنتاج شركة (McNeel) وهو متاح على الرابط التالي:
https://www.rhino3d.com
المجند (93) العدد (68) الجزء (2) إبريل 2024

المجلة كلية التربية – جامعة دمياط

- برنامج Sketch up: وهو برنامج متخصص في التصميم الهندسي المعماري يتميز بعديد من المميزات أهمها: سهولة استخدامه عن غيره من برامج التصميم ثلاثي الأبعاد، كما أنه يوفر مجموعة كبيرة من النماذج الجاهزة مثل: الأبواب، النوافذ، المرافق، السيارات، وهو من إنتاج شركة "Sketch up" وهو متوفر على الرابط التالي مجانًا:
https://www.sketchup.com

- برنامج Maya: يستخدم البرنامج في صناعة النماذج ثلاثية الأبعاد، والسينما والتلفزيون، ووسائط الدعاية والإعلان؛ بالإضافة إلى صناعة ألعاب الفيديو التفاعلية، وعمل التصميمات المعمارية الداخلية والخارجية، وأطلق هذا الاسم على البرنامج نسبة إلى حضارة المايا العربيقة التي يرجع تاريخها لأكثر من ألفي عام قبل الميلاد، وقد تم إنتاج البرنامج بواسطة شركة "Alias System" عام (1998 م)، وفي عام (2003 م) حصل البرنامج على جائزة الأوسكار في الإنجاز العلمي والتكنولوجي، وفي عام (2005 م) أصبح البرنامج ملك لشركة "Autodesk" الرائدة في مجال إنتاج برامج التصميم ثلاثية الأبعاد، وهو متوفر على الرابط التالي:
https://www.autodesk.com

- برنامج Tinker Cad: هو تطبيق ويب متخصص في نمذجة تصميمات ثلاثية الأبعاد على صفحات الإنترنت، تم تأسيسه في عام 2010 م من قبل شركة أوتو ديسك الرائدة في إصدار برامج التصميم الشهيرة مثل: برنامج 3DMAX (أو برنامج AutoCAD (Revit (أو برنامج (3D) بحيث ضمّن العديد من الأدوات الرائعة والاحترافية ويمكن استخدامه في تصميم وجمع مجسمات ثلاثية الأبعاد، والتعديل عليها بسهولة فهو تطبيق أونلاين يعمل على صفحات الويب ولا يحتاج إلى التثبيت على نظام الكمبيوتر، وهو متوفر على الرابط التالي:
https://www.tinkercad.com
3- مبادرات اختيار الباحثين لاستخدام برنامج (Tinker Cad) لإنتاج النماذج التعليمية الافتراضية:

البرامج التي تستخدمها طلاب الفرقة الثالثة شعبة تكنولوجيا التعليم في تصميم وإنتاج النماذج التعليمية الافتراضية على الإطلاق ومنها أنه: يمتلك واجهة مريحة وبسيطة ينكمه في وقت قصير من قبل المبدئين في التصميمات ثلاثية الأبعاد؛ فهو برنامج مجاني، وسهل الاستخدام ويمكن استخدامه من قبل الأطفال لتصميم مجسماتهم وشخصياتهم الافتراضية المفضلة، كما يمتكن الطفل من الوصول إلى تصميماته ومنحتها من أي مكان في العالم ومشاركتها مع أصدقائه وزماله ومعلمه، فهو برنامج مفتوح المصدر بحتوي على دليل تعريفي وتفصيلي لكل مكوناته وكيفية التعامل معه مما يسهل عملية تعلم استخدامه من قبل جميع الفئات العمرية، فضلاً عن كونه يتيح إمكانية تصدير ومشاركة الملفات عبر الإنترنت، كما أنه خال من الإعلانات المزعجة والتي تشتت ذهن المستخدم، ويسمح بالتحكم في خصوصية النماذج التعليمية الافتراضية المنتجة من خلاله والمعروضة عليه يمكن جعلها مرئية لعامة المشاهدين حول العالم بأكمله أو خاصة لا يستطيع أحد رؤيتها أو التعليق عليها، كما أنه يعمل على كافة أنظمة التشغيل ومنها نظام Linux، Windows (Windows)، ونظام ماك (Mac) ونظام لينكس (Linux).

ويتم فتح برنامج (Tinker cad) واستخدامه من خلال أي متصفح وبشكل أفضل على متصفح كروم (Chrome)، وفإيرفوكس (Firefox)، وبالتالي يمكن استخدامه من الحاسب الشخصي (الكمبيوتر) أو الجهاز اللوحي (التابلت) أو الجهاز الموبايل (الموبايل) ويتخذ النماذج المنتجة من خلاله بواسطة التخزين السحابي، حتى يسهل الوصول إليها من أجهزة متعددة، ويتيح البرنامج خيارات متنوعة لعمل تصميمات متناسقة ومجمعة، للوصول إلى نموذج تعليمي افتراضي مميز أقرب إلى
الواقع ويشكل احترازي، وأيضًا يمكن استيراد مجمات ثلاثية الأبعاد (3D) من برنامج أخرى من نوع فيكتور (Vector) وقد عملت المدارس الأمريكية على إدخاله في مناهجها الإبتدائية من عمر 8 سنوات حتى 11 سنة، وذلك لأن التلاميذ يمكن أن تستخدمه دون الحاجة إلى التدريب فهو يحتاج فقط إلى خيال وإبداع لا أكثر. ومن أهم فوائده للأطفال أنه يبني القدرات العقلية والإبداعية لدى الطفل، ويعمل تقنية طباعة التصميمات الثلاثية الأبعاد، ويكسبه الميول الخيالية ليصنع عالمه المثالي الموجود في ذهنه بسهولة ويسر مع زيادة المنافسة بينه وبين أقرانه مما يساعدهم على زيادة خلق أفكار جديدة ومبتكرة.

وبناءً على ما سبق فقد وقع اختيار الباحثين على برنامج Tinker cad نظرًا لما يتمتع به من المزايا السالفة ذكرها فضلاً عن كون البرنامج يدعم جميع العمليات والمراحل المتعلقة بإنتاج النماذج التعليمية الافتراضية، كما أنه لا يتطلب مكونات مادية ذات كفاءة عالية لأجهزة الحاسب الآلي المستخدمة للبرنامج، ومناسب لعينة البحث، فلاشك أنه يوفر للطلاب الوقت والجهد في التصميم حيث إنه يتيح أداء المهام المنشودة بمهارة عالية وبعد خطوات أقل، كما أن ملفات المصدر الخاصة بالبرنامج لا تتعرض للتلف أو الاختراق على عكس برامج التصميم الأخرى.

إجراءات البحث:

لتحقيق الهدف الرئيس من البحث الحالي وهو إعداد قائمة مهارات تطوير النماذج التعليمية الافتراضية المطلوبة تميزها لدى طلاب تكنولوجيا التعليم، فقد قام الباحثان بالإجراءات التالية:
1- تحديد الهدف من بناء قائمة المهارات.

استهدف بناء القائمة تحديد مهارات تطوير النماذج التعليمية الافتراضية المطلوبة
تتميتها لدى طلاب تكنولوجيا التعليم لمساعدتهم على إنتاج النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad.

2- تحليل مصادر إشتقاق قائمة مهارات تطوير النماذج التعليمية الافتراضية:

3- إعداد الصورة المبدئية لقائمة مهارات تطوير النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad:

قام الباحثون بتصميم الصورة المبدئية لقائمة مهارات تطوير النماذج التعليمية الافتراضية، حيث تضمنت عدد (3) مهارات رئيسية، ويتفرع منها (36) مهارة فرعية، ويندرج أسفل منها (435) مؤشرًا آدائيًا.

282
- عرض الصورة الميدنية لقائمة مهارات تطوير النماذج التعليمية الافتراضية على مجموعة من السادة الخبراء والمُحكَّمين المتخصصين في مجال تكنولوجيا التعليم:

قام الباحثون بعرض الصورة الميدنية لقائمة مهارات تطوير النماذج التعليمية الافتراضية على مجموعة من السادة المُحكَّمين المتخصصين في مجال تكنولوجيا التعليم لإبداء آرائهم في البنود التالية:

1. مدى أهمية كل مهارة بالقائمة، وتم وضع تقدير ثنائي (مهم، غير مهم)
2. مدى ارتباط مؤشرات الأداء بالمهارات الرئيسية والفرعية وتم وضع تقدير ثنائي (مرتبطة، غير مرتبط)
3. التأكد من الدقة العلمية لكل مهارة.
4. التأكد من الصياغة اللغوية لكل مهارة.
5. حذف أية مهارة غير مناسبة وإضافة المهارات المناسبة.

ويوضِح الجدول التالي نموذج تحكيم الصورة الميدنية لقائمة مهارات تطوير النماذج التعليمية الافتراضية:

<table>
<thead>
<tr>
<th>جدول (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>الدقة العلمنية</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>دقيقة</td>
</tr>
<tr>
<td>غير دقيقة</td>
</tr>
<tr>
<td>مربحة</td>
</tr>
</tbody>
</table>

- التدابير في ضوء آراء السادة المُحكَّمين:

تم إجراء التدابير في ضوء آراء السادة المُحكَّمين وهي كالتالي:

1- تعديل صياغة بعض مؤشرات القائمة لكون أكثر وضوحًا.
2- إضافة بعض مؤشرات الأداء لدقة التعلم في اكتساب المهارة.
ويوضح الجدول التالي تعديلات بعض مؤشرات الأداء والإضافة إليها بعد العرض على السادة الخبراء والمحكّمين المتخصصين في مجال تكنولوجيا التعليم والمستخدمين للبرنامج:

<table>
<thead>
<tr>
<th>تمددات بعض مؤشرات الأداء بعد عرضها على السادة المحكّمين والإضافة إليها</th>
</tr>
</thead>
<tbody>
<tr>
<td>مؤشرات الأداء قبل التعديل</td>
</tr>
<tr>
<td>إعادة صياغة بعض مؤشرات الأداء والإضافة إليها</td>
</tr>
<tr>
<td>1 - وضع النموذج التعليمي الإفتراضي (Work Plane)</td>
</tr>
<tr>
<td>2 - النقر على أيقونة Sim lab</td>
</tr>
<tr>
<td>3 - النقر على قائمة All Throwables</td>
</tr>
<tr>
<td>4 - النقر على قائمة Material</td>
</tr>
<tr>
<td>5 - النقر على قائمة scene settings</td>
</tr>
<tr>
<td>6 - النقر على (color) لاختيار لون مناسبة للنموذج الإفتراضي</td>
</tr>
<tr>
<td>7 - النقر على (play simulation) لتجربة النموذج الإفتراضي</td>
</tr>
<tr>
<td>8 - النقر على (Reset) لمسح الجزء المحدد من النموذج والإعادة إلى البداية</td>
</tr>
<tr>
<td>9 - النقر على (show all) لإظهار النماذج المخفية من منصة العمل</td>
</tr>
<tr>
<td>10 - النقر على أرضية منصة العمل (ground)</td>
</tr>
<tr>
<td>11 - النقر على (Material) لتحديد خامة النموذج الإفتراضي</td>
</tr>
<tr>
<td>12 - النقر على (color) لتحديد لون النموذج الإفتراضي الموجود</td>
</tr>
<tr>
<td>13 - النقر على (shape) لتحديد خامة النموذج الإفتراضي</td>
</tr>
<tr>
<td>14 - النقر على (Material) لتحديد خامة أرضية منصة العمل</td>
</tr>
<tr>
<td>15 - النقر على (color) لإخفاء النموذج الإفتراضي من منصة العمل</td>
</tr>
<tr>
<td>16 - النقر على (Ctrl+H) لإظهار النماذج المخفية من منصة العمل</td>
</tr>
<tr>
<td>17 - النقر على (share) لمشاركة الفيديو لنموذج الواقع الافتراضي</td>
</tr>
<tr>
<td>18 - النقر على (creat video) لتحريك الفيديو على البرنامج</td>
</tr>
<tr>
<td>19 - النقر على (download) لتحلّل الفيديو على جهازك الشخصي</td>
</tr>
</tbody>
</table>
نتائج الدراسة:

1- تم عرض الصورة المبدئية لمهارات تطوير النماذج التعليمية الافتراضية على المكا من السادة الأستاذة والخبراء في مجال تكنولوجيا التعليم واعدةت نسبة الاتفاق على جميع المهارات بنسبة 100% فيما عدا بعض مؤشرات الأداء المرتبطة بالمهارات الرئيسية والفرعية.

2- تختلف برامج إنتاج النماذج التعليمية الافتراضية من حيث مؤشرات الأداء المرتبطة بالمهارات الفرعية والرئيسة لإنتاج النماذج التعليمية الافتراضية فكل برنامج من هذه البرامج له مؤشرات أدائية معينة لتحقيق أي مهارة من مهارات الإنتاج.

3- تم إجراء التعديلات في قائمة المهارات التي اتفق عليها السادة المحكوم حيث ظهرت القائمة في صورتها النهائية لتتضمن عدد (6) مهارات رئيسية، ويتفرع منها (26) مهارة فرعية، ويدمج أسفل منها (45) مؤشرًا أدائيًا كما يوضحها الجدول التالي:

جدول (4) القائمة النهائية لمهارات تطوير النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad

<table>
<thead>
<tr>
<th>عدد الأداءات</th>
<th>الرتبة ومعاييرها</th>
<th>رمز</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>مهارة تحليل النماذج التعليمية الافتراضية</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>تحليل الهدف العام للنموذج التعليمي الافتراضي.</td>
<td>1آ</td>
</tr>
<tr>
<td>5</td>
<td>تحليل الأهداف الإجرائية للنموذج التعليمي الافتراضي.</td>
<td>2آ</td>
</tr>
<tr>
<td>6</td>
<td>تحليل خصائص المتعلم المقدم لهم النموذج التعليمي الافتراضي.</td>
<td>3آ</td>
</tr>
<tr>
<td>7</td>
<td>تحليل المحتوى التعليمي المرتبطة بالنموذج الافتراضي.</td>
<td>4آ</td>
</tr>
<tr>
<td>9</td>
<td>تحليل البيانو الأساس للمؤشرات التعليمية الافتراضي.</td>
<td>5آ</td>
</tr>
<tr>
<td>8</td>
<td>تحليل المتطلبات والإمكânات اللازمة لإنتاج النموذج التعليمي الافتراضي.</td>
<td>6آ</td>
</tr>
</tbody>
</table>

ثانياً: مهارة تصميم النماذج التعليمية الافتراضية

<table>
<thead>
<tr>
<th>عدد الأداءات</th>
<th>الرتبة ومعاييرها</th>
<th>رمز</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>تصميم الأدلة الإرشادية للمؤشرات التعليمية بالرسوم المرسوم.</td>
<td>1آ</td>
</tr>
<tr>
<td>4</td>
<td>تصميم الخطوط الرئيسية بالرسوم المرسوم للمؤشرات التعليمية المرسوم.</td>
<td>2آ</td>
</tr>
<tr>
<td>3</td>
<td>إضافة الادلة الثالث بالرسوم المرسوم للمؤشرات التعليمية المرسوم.</td>
<td>3آ</td>
</tr>
<tr>
<td>4</td>
<td>كتابة النصوص الموضوعة لمكونات النموذج التعليمي المرسوم.</td>
<td>4آ</td>
</tr>
<tr>
<td>5</td>
<td>إكمال النموذج التعليمي المرسوم بالادوات المحكية له في الواقع.</td>
<td>5آ</td>
</tr>
<tr>
<td>العدد</td>
<td>المهام الرئيسية وإجراءاتها الفرعية</td>
<td>م</td>
</tr>
<tr>
<td>-------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>كتابة التفاعلات الصوتية الموضحة لمكونات النموذج التعليمي المرسوم.</td>
<td>400</td>
</tr>
<tr>
<td>13</td>
<td>إنشاء حساب شخصي على الموقع الرسمي لبرنامج (Tinker Cad).</td>
<td>130</td>
</tr>
<tr>
<td>5</td>
<td>التعرف على إمكانيات شريط قوائم برنامج (Work Plane).</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>تغيير إعداد منصة (Work Plane).</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>إضافة شكل هندسي ثلاثي الأبعاد إلى منصة (Work Plane).</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>ضبط خصائص الشكل الهندسي المضاف لمنصة (Work Plane).</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>تغيل أبعاد وزوايا الشكل الهندسي المضاف لمنصة (Work Plane).</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>تغيير موضوع الشكل الهندسي على منصة (Work Plane).</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>حذف شكل هندسي من منصة (Work Plane).</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>تحويل السمات ثنائية البعد إلى رسومات ثلاثية الأبعاد بواسطة البرنامج (Work Plane).</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>إضافة مجسمات جاهزة من على البرنامج إلى منصة (Work Plane).</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>إضافة مجسمات جاهزة من خارج البرنامج إلى منصة (Work Plane).</td>
<td>10</td>
</tr>
<tr>
<td>16</td>
<td>التعرف على وظيفة كل أداة من شريط أدوات برنامج (Tinker Cad).</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>إضافة خروج جديد إلى منصة (Work Plane).</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>مشاهدة الزملاء في إنتاج النموذج التعليمي الافتراضي من خلال برنامج (Tinker Cad).</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>إضافة تعالقات نصية للنموذج التعليمي الافتراضي الموجودة على منصة (Work Plane).</td>
<td>6</td>
</tr>
</tbody>
</table>

رابعًا: مهارة إضاءة النماذج التعليمية الافتراضية والتحكم في زوايا رؤيتها باستخدام كاميرا برنامج (Tinker Cad)

<table>
<thead>
<tr>
<th>العدد</th>
<th>المهام الرئيسية وإجراءاتها الفرعية</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>إنتاج دائرة كهربائية لإضاءة النماذج التعليمية الافتراضية.</td>
<td>130</td>
</tr>
<tr>
<td>9</td>
<td>ضبط زوايا رؤية النموذج التعليمي الافتراضي بواسطة كاميرا البرنامج.</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>إدراج النموذج التعليمي الافتراضي المراد برمجته لمنصة (Code Blocks).</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>إضافة الأكواد البرمجية للنموذج التعليمي الافتراضي.</td>
<td>15</td>
</tr>
</tbody>
</table>

خامسًا: برامج النماذج التعليمية الافتراضية باستخدام برنامج (Tinker Cad)

<table>
<thead>
<tr>
<th>العدد</th>
<th>المهام الرئيسية وإجراءاتها الفرعية</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>محاكاة النموذج التعليمي الافتراضي لواقع الافتراضي من خلال برنامج (Tinker Cad).</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>حفظ النموذج التعليمي الافتراضي على جهازك الشخصي.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>نشر النموذج التعليمي الافتراضي على شبكة الإنترنت.</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>طباعة النموذج التعليمي الافتراضي طباعة ثلاثية الأبعاد.</td>
<td>7</td>
</tr>
</tbody>
</table>

ستسأ: مهارة حفظ وإخراج النماذج التعليمية الافتراضية باستخدام برنامج (Tinker Cad)

<table>
<thead>
<tr>
<th>العدد</th>
<th>المهام الرئيسية وإجراءاتها الفرعية</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>إنتاج دائرة كهربائية لإضاءة النماذج التعليمية الافتراضية.</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>محاكاة النموذج التعليمي الافتراضي لواقع الافتراضي من خلال برنامج (Tinker Cad).</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>حفظ النموذج التعليمي الافتراضي على جهازك الشخصي.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>نشر النموذج التعليمي الافتراضي على شبكة الإنترنت.</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>طباعة النموذج التعليمي الافتراضي طباعة ثلاثية الأبعاد.</td>
<td>7</td>
</tr>
</tbody>
</table>
توصيات البحث

وبوصي الباحثون بما يلي:

1- ضرورة تبني خطة استراتيجية لاستخدام مهارات تطوير المناهج التعليمية الافتراضية في كافة المراحل الدراسية المختلفة.

2- عقد دورات تدريبية للطلاب المعلمين أثناء الخدمة للتدريب على كيفية استخدام مهارات تطوير المناهج التعليمية الافتراضية في كلية التربية.

3- ضرورة تفعيل توظيف المناهج التعليمية الافتراضية عند تطوير بيئات التعلم الإلكتروني لكونه مناسبًا لخصائصها وطبيعة الأدوات المتاحة فيها.

4- إعداد الطلاب بكليات التربية للتعامل مع برنامج (Tinker Cad) في كافة المقررات.

5- ضرورة تفعيل توظيف المناهج التعليمية الافتراضية في تعليم ذوي الهمم اعتمادًا على التمثيل البصري وتكوين تصورات بصرية صحيحة حول الكثير من المعلومات اللفظية المجردة.

6- تضمين مهارات تطوير المناهج التعليمية الافتراضية برامج إعداد الطلاب المعلمين بكليات التربية.

مقترحات البحث

ويقترح الباحثون ما يلي:

1- استخدام المناهج التعليمية الافتراضية في تدريس مادة العلوم لتنمية مهارات التفكير البصري لدى تلاميذ المرحلة الابتدائية.

2- تطوير بيئة تعلم إلكترونية قائمة على أنواع المناهج التعليمية الافتراضية لتنمية مهارات التفكير التخيلي لدى طلاب المرحلة الثانوية.
3- فاعلية النماذج التعليمية الافتراضية في تصوير التصورات الخطأ للمفاهيم العلمية لدى طلاب المرحلة الإعدادية.

4- أثر النماذج التعليمية الافتراضية في تنمية مهارات إنتاج الخرائط الذهنية الإلكترونية لدى طلاب تكنولوجيا التعليم.

المراجع

أولاً المراجع العربية:

أحمد سلمان حمادي الفلاحي (2013). إعداد نماذج ثلاثية الأبعاد وتطبيقتها باستخدام التقنيات الحديثة في مدارس مدينة الرمادي الجديدة: دراسة تطبيقية، مجلة جامعة الأنبذ للعلوم الإنسانية، جامعة الأنبذ، كلية التربية للعلوم الإنسانية، ع.

إسماعيل عمر حسونة، وعبد الله الشرفي المزارع، ومحمد عطية خميس، ويحيى محمد أبو جحجح، ونوفين منصور محمد السيد (2013). تصميم نماذج ثلاثية الأبعاد - ثلاثية الأبعاد برامج قائم على الويب، وأثرهما على تنمية مهارات استخدام أدوات تكنولوجيا التعليم: دراسة تجريبية بكلية التربية - جامعة الأقصى، مجلة تكنولوجيا التعليم، سلسلة دراسات وبحوث (3).- أبريل، 3-57.

رجب السيد النبهي، وليد يوسف إبراهيم، تسيير مصطفى عبد الرحيم (2014). التفاعل بين نمط عرض الرسومات ثلاثية الأبعاد وأسلوب التحكم فيها في برامج الكمبيوتر التعليمية وأثره على التحصيل وتصويب التصورات الخطأ للمفاهيم العلمية لدى طلاب المرحلة الثانوية.
المؤتمر العلمي الرابع عشر بعنوان: تكنولوجيا التعليم والتدريب الإلكتروني عن بعد، وتطبيقات التحديث في الوطن العربي. الجمعية المصرية لتكنولوجيا التعليم مصر.

زيد على البشارة (2009). أثر استخدام برامج تعليمية محوسبة في إجراء التجارب الكيميائية في تحصيل طلبة الصف التاسع الأساسي في مبحث الكيمياء وعلوم الأرض، مجلة جامعة دمشق للعلوم التربوية، المجلد (25)، العدد (1)، 404-412.

مجلة دراسات وبحث. الجمعية المصرية لتكنولوجيا التربية، ع.3، 2008.

علي مقبل عبادة. (2014). واقع استخدام معلمي العلوم للمستندات التكنولوجية في تدريسهم بمحافظة المنوفية، مجلة المنازل، (ع)، 2، 402، جامعة آل البيت، المملكة الأردنية الهاشمية.

في اكتساب مهارات التصميم ثلاثي الأبعاد لدى طلبة تكنولوجيا التعليم بالجامعة الإسلامية. (رسالة ماجستير منشورة). كلية التربية. الجامعة الإسلامية. غزة.

المؤتمر الدولي الخامس. (2016). بعنوان إعداد وتدريب المعلمين في ضوء مطالب التنمية ومستجدات مصر، كلية التربية، جامعة أم القرى، في الفترة من الثالث والعشرين وحتى الخامس والعشرين من شهر ربيع الثاني الجامع 1437 هـ.

ملحق (1)

قائمة بأسماء السادة الخبراء والمحكرين

<table>
<thead>
<tr>
<th>الوظيفة وجهة العمل</th>
<th>الاسم</th>
<th>رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>م/ د/ عدنيد عبد الحليم</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>1</td>
</tr>
<tr>
<td>م/ د/ زهير عبد عثمان</td>
<td>استاذ تكنولوجيا التعليم وعميد كلية التربية جامعة دمياط السابق</td>
<td>2</td>
</tr>
<tr>
<td>م/ د/ إسماعيل شيتا</td>
<td>استاذ ورئيس قسم تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>3</td>
</tr>
<tr>
<td>م/ د/ نورين رفعت شحاتة</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة دمياط</td>
<td>4</td>
</tr>
<tr>
<td>م/ د/ راشد أحمد إبراهيم</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>5</td>
</tr>
<tr>
<td>م/ د/ عبد العال عبد الله السعد</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>6</td>
</tr>
<tr>
<td>م/ د/ عدنيد شحات سعد عثمان</td>
<td>استاذ تكنولوجيا التعليم وعميد كلية التربية جامعة دمياط</td>
<td>7</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>8</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>9</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>10</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>11</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>12</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>13</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>14</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>15</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>16</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>17</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>18</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>19</td>
</tr>
<tr>
<td>م/ د/ إسماعيل محمد إسماعيل حسن</td>
<td>استاذ تكنولوجيا التعليم بكلية التربية جامعة المنصورة</td>
<td>20</td>
</tr>
</tbody>
</table>

المجلة كلية التربية – جامعة دمياط
المجلد (21) العدد (89) الجزء (2) أبريل 2004

294
ملحق (2) الصورة النهائية لقائمة مهارات تطوير النماذج التعليمية الافتراضية المطلوبة لتمكينها لدى طلاب تكنولوجيا التعليم

<table>
<thead>
<tr>
<th>المهارات الرئيسية وأجراءاتها الفرعية</th>
<th>م</th>
</tr>
</thead>
<tbody>
<tr>
<td>مهارة تحليل النماذج التعليمية الافتراضية</td>
<td></td>
</tr>
<tr>
<td>تحليل الهدف العام للمؤلف التعليمي الافتراضي</td>
<td>1-1</td>
</tr>
<tr>
<td>تحليل الأهداف الإجرائية للمؤلف التعليمي الافتراضي</td>
<td>2-1</td>
</tr>
<tr>
<td>تحليل مصطلحات المؤلف للمؤلف التعليمي الافتراضي</td>
<td>3-1</td>
</tr>
<tr>
<td>تحليل السيناريو الأساسي للمؤلف التعليمي الافتراضي</td>
<td>4-1</td>
</tr>
<tr>
<td>تحليل المتطلبات والإجراءات اللازمة لإنجاز المؤلف التعليمي الافتراضي</td>
<td>5-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مهارة تصميم النماذج التعليمية الافتراضية</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>تصميم الأدلة الإرشادية للمؤلف التعليمي بالقلم الرصاص في كراسة الرسم</td>
<td>1-2</td>
</tr>
<tr>
<td>تصميم الخطوط الرئيسية والمقدمة للمؤلف التعليمي المرسوم</td>
<td>2-2</td>
</tr>
<tr>
<td>إضافة الأخطاء الثالثة بالقلم الرصاص للمؤلف التعليمي المرسوم</td>
<td>3-2</td>
</tr>
<tr>
<td>كتابة النصوص الموضوعة لمكونات المؤلف التعليمي المرسوم</td>
<td>4-2</td>
</tr>
<tr>
<td>كتابة النصوص الموضوعة لمكونات المؤلف التعليمي المرسوم بالقلم الرصاص المحايد للتوقيع</td>
<td>5-2</td>
</tr>
<tr>
<td>كتابة التعليقات الصوتية الموضوعة لمكونات المؤلف التعليمي المرسوم</td>
<td>6-2</td>
</tr>
<tr>
<td>المجلد (93)</td>
<td>العدد (89)</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
</tr>
</tbody>
</table>

ثلاثة مهارة إنتاج النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>إنشاء حساب شخصي على الموقع الرسمي لبرنامج Tinker Cad (Work Plane)</td>
</tr>
<tr>
<td>2-3</td>
<td>التعرف على إمكانية شريط قوات برنامج Tinker Cad</td>
</tr>
<tr>
<td>3-3</td>
<td>فتح منصة تطويرية</td>
</tr>
<tr>
<td>3-4</td>
<td>تغيير إعداد منصة</td>
</tr>
<tr>
<td>3-5</td>
<td>إضافة شكل هندسي ثلاثية الأبعاد إلى منصة</td>
</tr>
<tr>
<td>3-6</td>
<td>ضبط خصائص الشكل الهندسي المضمن لمنصة</td>
</tr>
<tr>
<td>3-7</td>
<td>تدويل أبعاد وزوايا الشكل الهندسي المضمن لمنصة</td>
</tr>
<tr>
<td>3-8</td>
<td>تغيير موقع الشكل الهندسي على منصة</td>
</tr>
<tr>
<td>3-9</td>
<td>حذف شكل هندسي من منصة</td>
</tr>
</tbody>
</table>

مهارة إنتاج دائرة كهربائية لإضاءة النماذج التعليمية الافتراضية

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>إنتاج دائرة كهربائية لإضاءة النماذج التعليمية الافتراضية</td>
</tr>
<tr>
<td>4-2</td>
<td>ضبط زوايا رؤية النموذج التعليمي الافتراضي بواسطة كاميرا البرنامج</td>
</tr>
</tbody>
</table>

خامس مهارة برمجة النماذج التعليمية الافتراضية باستخدام برنامج Code Blocks

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>إدراج النموذج التعليمي الافتراضي المراد برمجته بنطاق</td>
</tr>
<tr>
<td>5-2</td>
<td>إضافة الأكواد البرمجية للنموذج التعليمي الافتراضي</td>
</tr>
</tbody>
</table>

سادس مهارة حفظ وإخراج النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>حفظ النموذج التعليمي الافتراضي على جهازك الشخصي</td>
</tr>
<tr>
<td>6-2</td>
<td>نشر النموذج التعليمي الافتراضي على شبكة الإنترنت</td>
</tr>
<tr>
<td>6-3</td>
<td>طباعة النموذج التعليمي الافتراضي طباعة ثلاثية الأبعاد</td>
</tr>
</tbody>
</table>

تتابع المهارات الرئيسية وإجراءاتها الفرعية

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>تحويل الرسومات ثنائية إلى رسومات ثلاثية للأبعاد بواسطة البرنامج</td>
</tr>
<tr>
<td>1-4</td>
<td>إضافة مجسمات جاهزة من على البرنامج إلى منصة</td>
</tr>
<tr>
<td>1-5</td>
<td>إضافة مجسمات جاهزة من خارج البرنامج إلى منصة</td>
</tr>
<tr>
<td>1-6</td>
<td>التعرف على وظيفة كل أداة من شريط أدوات برنامج Tinker Cad</td>
</tr>
<tr>
<td>1-7</td>
<td>إضافة عنوان جديد إلى منصة</td>
</tr>
<tr>
<td>1-8</td>
<td>إضافة تعليقات نصية للنماذج التعليمية الافتراضية الموجودة على منصة</td>
</tr>
<tr>
<td>2-1</td>
<td>مشاركة الرسومات في إنتاج النماذج التعليمية الافتراضية من خلال برنامج Tinker Cad</td>
</tr>
</tbody>
</table>
| 2-2 | حضور إضافة نموذج في منصة ومازقا في إنتاج النماذج التعليمية الافتراضية

رابع مهارة اضافة النماذج التعليمية الافتراضية والتحكم في زوايا رؤيتها باستخدام كاميرا برنامج Tinker Cad

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>إنتاج دائرة كهربائية لإضاءة النماذج التعليمية الافتراضية</td>
</tr>
<tr>
<td>3-2</td>
<td>ضبط زوايا رؤية النموذج التعليمي الافتراضي بواسطة كاميرا البرنامج</td>
</tr>
</tbody>
</table>

خامس مهارة برمجة النماذج التعليمية الافتراضية باستخدام برنامج Code Blocks

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>إدراج النموذج التعليمي الافتراضي المراد برمجته بنطاق</td>
</tr>
<tr>
<td>5-2</td>
<td>إضافة الأكواد البرمجية للنموذج التعليمي الافتراضي</td>
</tr>
</tbody>
</table>

سادس مهنة حفظ وإخراج النماذج التعليمية الافتراضية باستخدام برنامج Tinker Cad

<table>
<thead>
<tr>
<th>رقم</th>
<th>مهارة</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>حفظ النموذج التعليمي الافتراضي على جهازك الشخصي</td>
</tr>
<tr>
<td>6-2</td>
<td>نشر النموذج التعليمي الافتراضي على شبكة الإنترنت</td>
</tr>
<tr>
<td>6-3</td>
<td>طباعة النموذج التعليمي الافتراضي طباعة ثلاثية الأبعاد</td>
</tr>
</tbody>
</table>

المجلة كلية التربية – جامعة دمشق

المجلد (93)

العدد (89)

الجزء (2)

تاريخ (أبريل 2024)

الصفحة: 296